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Abstract 

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder affecting millions of elderly individuals worldwide. 
Clinically, PD is diagnosed based on the presentation of motoric symptoms. Other methods such as F‑DOPA PET scan 
or α‑Synuclein detection from the cerebral spinal fluid are either too expensive or invasive for routine use. Omics 
platforms such as transcriptomics, proteomics, and metabolomics may identify PD biomarkers from blood, which 
can reduce cost and increase efficiency. However, there are many biological moieties being measured and issues 
with false positives/negatives. It is also unknown which omics platform offers most useful information. Therefore, it 
is important to assess the reliability of these omics studies. Here, we shortlisted and analysed nearly 80 published 
reports across transcriptomics, proteomics and metabolomics in search of overlapping blood‑based biomarkers 
for PD. The top biomarkers were reported across 29%, 42% and 12.5% of shortlisted papers in transcriptomics, prot‑
eomics and metabolomics respectively. These percentages increased to 42%, 60% and 50% accordingly when stud‑
ies were grouped by specific blood subtypes for analysis, demonstrating the need for test kits to be blood‑subtype 
specific. Following systematic analyses, we propose six novel PD biomarkers: two mRNAs (Whole blood, WB) – Arg1 
and SNCA, two proteins (Plasma EV) – SNCA and APOA1, and two metabolites (WB) – 8‑OHdG and uric acid for fur‑
ther validation. While these proposed biomarkers are useful, they are also snapshots, representing subsets of larger 
pathways of origin where the different omics levels corroborate. Indeed, identifying the interconnections across differ‑
ent biological layers can strengthen contextual reasoning, which in turn, would give rise to better quality biomarkers. 
Knowledge integration across the omics spectrum revealed consistent aberrations on the same neuroinflammation 
pathway, showcasing the value of integrative (i)‑omics agreements for increasing confidence of biomarker selection. 
We believe that our findings could pave the way for identifying reproducible PD biomarkers, with potential for clinical 
deployment.
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Graphical Abstract
Six Proposed blood‑based biomarkers. Seventy‑nine publications across transcriptomics, proteomics and metabo‑
lomics were shortlisted and analysed for reported biomarkers. The proposed biomarkers are SNCA, APOA1, Arg1, 
8‑OHdG and Uric acid.

Background: Parkinson’s Disease and Current 
Diagnostic Tools
Parkinson’s disease (PD) is a prevalent neurological disor-
der [1] characterized by the loss of dopaminergic neurons 
in the substantia nigra pars compacta of the midbrain [2]. 
Since its discovery in 1817, the incidence rates of PD have 
increased by 10 times over the past nine decades [3]. PD 
prevalence is strongly associated with the elderly, a phe-
nomenon that aligns with the notion that age is a major 
risk factor for the development of PD [4]. As the global 
population continues to age rapidly, PD poses a signifi-
cant threat in deteriorating the quality of life for many 
afflicted individuals as well as their caregivers.

PD is a progressive neurodegenerative disease typi-
cally diagnosed via neurological examination for classical 

motor symptoms such as bradykinesia and resting trem-
ors [5]. Clinically, PD diagnosis is usually conducted 
using the Unified Parkinson’s Disease Rating Scale 
(UPDRS), which assesses an individuals’ PD-related 
motor and non-motor deficits such as rigidity and olfac-
tory dysfunction [6]. Additionally, the UPDRS score is 
used to track disease progression, with increasing score 
indicating worsening of PD disability [7]. However, 
even with clinical markers, the misdiagnosis rate for PD 
remains high at 42% [8, 9]. Clearly, less subjective pheno-
typic biomarkers would be helpful to improve PD diagno-
sis. To reduce subjectivity in PD diagnosis, brain imaging 
tools such as Magnetic resonance imaging (MRI) and 
Positron Emission Tomography (PET) have been used 
as a supplement and have shown potential to achieve a 
reliable diagnosis for parkinsonism. In particular, the 
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123I-ioflupane DaTSCAN was approved by the US FDA 
in 2011 for doctors to confirm a PD diagnosis [10]. How-
ever, these imaging tools are expensive to conduct, and a 
negative result does not absolutely rule out PD [11, 12]. 
Therefore, a cheaper but feasible alternative is needed for 
PD diagnosis.

Recently, mounting evidence suggested that biofluids 
can reflect the pathophysiology of PD [13–15]. This, in 
part, is fuelled by the Braak’s hypothesis that sporadic PD 
begins via the olfactory or gastrointestinal system before 
affecting the central nervous system, suggesting that PD 
is not confined to the brain [16]. Biofluids such as urine, 
blood, cerebrospinal fluid (CSF) and tear fluid have been 
studied for the metabolites of dopamine since PD is 
driven by the loss of dopaminergic neurons. CSF analy-
sis could be a reliable prognostic tool as it better mirrors 
pathological changes of the brain [13, 17]. However, col-
lecting CSFs is invasive and is not practically suitable in 
clinical settings for suspected cases of PD [13]. Hence, 
this had led to the investigations of using non-invasive 
blood-based biomarkers such as serum, whole blood, 
and exosomes to facilitate PD diagnosis. With the rise of 
sequencing technologies, many studies have used omics 
to analyse diverse biological modalities of the genome, 
transcriptome, proteome, and metabolome in the blood 
of PD patients, with the view that they may provide valu-
able insights into the etiology of PD. However, current 
studies tend to be within the respective omics field and 
lacks cross-platform corroborations. This was demon-
strated by Redenšek et  al. where only 4% (5 out of 107 
papers examined) of PD-related omics study from 2005 
to 2017 were integrative [18]. The lack of corroboration 
represents an important research gap. The overall con-
tributory value of each individual study can be greatly 
enhanced by careful data mining and knowledge integra-
tion, to demonstrate how functionally coherent (or dis-
cordant) the targets reported across the omics spectrum 
are. Integrating multi-layered studies and identifying 
corroborations could reduce false-positive and false-neg-
ative results. It could also strengthen our contextual rea-
soning and understanding of the interconnections across 
different biological layers, thus deepening our insights 
into PD prognosis. To achieve this, we examined a total 
of 79 papers spanning transcriptomics, proteomics, and 
metabolomics, which revealed six blood-based biomark-
ers suitable for PD diagnosis.

Individual omics platform demonstrate diagnostic 
potential with improved agreement on biomarkers 
across studies for specific blood components
Advances in high-throughput “omics” technologies 
provides new ways of studying diseases. Omics refers 
to a field of biological study that has the suffix -omics, 

which include genomics, transcriptomics, proteom-
ics, metabolomics and more recently microbiomics 
[19, 20]. Omics technologies provide insight not only 
at single biological moieties, but also at higher order 
functional structures such as biological mechanisms 
or pathways critical for initiating various diseases. For 
example, genome-wide association studies (GWAS) 
have identified common PD risk loci consisting of 
PARK16, ITPKB, MCCC1, SNCA, FAM47E-SCARB2, 
DLG2, LRRK2, RIT2 and FYN [21]. Common risk loci 
like SNCA provides a handle for researchers to inves-
tigate the pathology of PD, for instance alternative 
splicing of SNCA risk loci can result in a SNCA112 
transcript that results in SNCA proteins that are struc-
turally more prone to aggregation [22]. The aggrega-
tion of α-synuclein protein into Lewy bodies is the 
histopathological hallmark of PD [23]. Through omics 
studies, we also now know that LRRK2 interacts with 
many other important proteins and play a central role 
in pathways underlying PD [24].

To exploit omics for potential blood-based biomarkers, 
we gathered papers about PD spanning transcriptomics, 
proteomics and metabolomics studies via PubMed or 
Google Scholar between 2015 to 2021. The screening cri-
teria is summarised by the PRISMA flow diagram (Fig. 1). 
Briefly, in our predefined timeframe, the search engine 
pairings of “Parkinson” and “Metabolomics” in PubMed 
yielded 260 results, while “Parkinson” and “Proteomics” 
yielded 568 results, whereas “Parkinson” with “Transcrip-
tomics” yielded 104 results. The search results suggest 
that proteins are most popularly studied in the field of 
PD, which reflects the widely accepted role of misfolded 
protein aggregates in PD pathogenesis. As our focus is on 
blood-based biomarkers, we finetuned our search terms 
accordingly. The following final combinations of search 
terms were used: “PD”, “Parkinson’s Disease”, “Blood” / 
“Blood-based biomarkers”, “Plasma EV”, “Serum EV” with 
“Transcriptomics” or “mRNA”, “Proteomics” or “Pro-
teins”, “Metabolomics” or “Metabolites” for the respec-
tive omics. Only original research articles were selected. 
Review papers were examined for the original research 
articles that were cited so as to avoid double counting, 
thus resulting in some of the older original research arti-
cles being included in this analysis. This resulted in 18 
transcriptomics- [25–42], 34 proteomics- [14, 43–74] 
and 27 metabolomics-related papers [46, 59, 72, 75–99], 
with a total of 6 different blood subtypes covered across 
the 79 papers. These included whole blood (24.0%), 
peripheral blood mononuclear cell (6.3%), serum (16.5%), 
plasma (26.6%), plasma extracellular vesicle (EV) (15.2%) 
and serum EV (11.1%). Interestingly, transcriptomic stud-
ies tend to focus on whole blood samples (66.7%), while 
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proteomic studies focused on EVs (55.9%) and metabo-
lomic studies on plasma (44.4%).

Individually, omics technology reveals some poten-
tial for identifying risk factors, diagnostic biomarkers 
and therapeutic targets for PD as summarized in Sup-
plementary Table 1, 2, 3 and 4 across the 79 papers we 
examined. For each of the 18 transcriptomics-, 34 pro-
teomics-, 27 metabolomics-related papers, we noted 
the list of reported targets and examined the agree-
ment rate of reported targets across papers within each 
omics field. For each transcript, protein or metabolite, 
agreement rate is defined as the number of papers that 
reported it as biomarker divided by the total number 
of papers examined in the corresponding omics field. 
The highest agreement rate was 29% amongst papers 

publishing transcriptome signatures between 2007–
2021, 42% amongst papers publishing proteome signa-
tures between 2009–2021 and 12.5% amongst papers 
publishing metabolite signatures between 2009–2021 
(Table  1). For each omic field, we further subdivided 
the transcript, protein or metabolite into the blood 

Fig. 1 PRISMA 2020 flow diagram for new systematic reviews. The screening process of 932 papers on PubMed related to Parkinson, 
Transcriptomics, Proteomics and Metabolomics to a final 79 papers for review that are blood‑based specific

Table 1 Comparison of highest agreement rates across all 
papers within transcriptomics, proteomics and metabolomics. 
Percentage agreement increased with specificity of blood 
component

Transcriptomics Proteomics Metabolomics

ALL Blood types 29% 42% 12.5%

Blood Type‑Specific 42% 60% 50%
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subtypes (ie. Serum, plasma, EV etc.) that they were 
reported in and calculated the agreement rate within 
the blood subtypes. Importantly, the highest agreement 
rates increased to 42%, 60% and 50% for transcriptom-
ics, proteomics and metabolomics respectively, when 
we grouped the papers by specific blood subtypes. This 
suggests that different blood subtypes reflect varying 
differential changes to PD that can be used as biomark-
ers and future studies should be specific about the com-
ponent of blood being examined.

Multi‑omics analysis suggests 6 blood component 
specific parkinson’s disease biomarkers
Genetic analysis of biomarkers suggests the use of Arg1 
and SNCA gene in whole blood as potential blood‑based 
mRNA biomarkers of PD
We included 15 studies that looked at gene upregula-
tion and 17 studies that looked at gene downregulation 
across distinct blood subgroups (Table  2). Across all 
studies, commonly reported upregulated genes include 
Arginase 1 (ARG1) (26.67%) and Thrombomodulin 
(THBD) (26.7%). These genes were also reported in 
papers specific for whole blood. Interestingly, Arg1, 
an anti-inflammatory marker for anti-inflammatory 
microglia polarisation, is reported to be supressed in 
MPP + PD model [100] and affected by micro-RNA 
miR-155 in AAV2-SYN PD model [101]. Given the role 
of neuroinflammation and microglia polarisation [102] 
in PD, we selected Arg1 as a candidate biomarker. On 
the other hand, the most downregulated gene across 
all papers is SNCA (29.4%). SNCA is also the most 

reported downregulated gene in papers on whole blood 
(42%).

Protein analysis of the various blood subtypes suggest 
use of SNCA and APOA1 in plasma EV as potential protein 
biomarkers of PD
We identified 31 papers studying protein upregulation 
across various blood subtypes and 18 papers studying 
protein downregulation suitable for our intersection 
analysis (Table 3). The more commonly reported upregu-
lated proteins across all blood subtypes in these papers 
are SNCA (42%), MAPT (10%), TTR (10%) and VWF 
(10%) (Table 3). When examining the specific blood sub-
types, SNCA is still the most reported upregulated pro-
tein in plasma EV (60%), serum EV (57%) and plasma 
(25%). The more commonly reported downregulated 
proteins across all blood subtypes in the 18 papers are 
APOA1 (16.7%), FGG (16.7%), IGKV3-20 (16.7%) and 
SNCA (16.7%). Surprisingly, SNCA protein that is most 
reported as upregulated is also reported to be downregu-
lated by other studies [53, 55, 73]. Although it seems puz-
zling to observe downregulation in αSYN gene expression 
and upregulation in SNCA protein, various explanations 
have been proposed. For example, a downregulation in 
αSYN gene could be induced by upregulation in DNA 
methylation in the CpG sites that lead to the exhibition of 
PD phenotypes [103]. Contrastingly, an upregulation of 
SNCA protein could be observed after autophagy-lyso-
somal pathway failure, where low-aggregated SNCA will 
predominantly be released via exosomes, in line with our 
observations of increased SNCA reported in plasma EVs 

Table 2 Analysis of top transcriptomic hits categorised by blood subtypes
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[104]. Nonetheless, we selected SNCA as our biomarker 
of choice since its expression is reported by most as being 
affected in PD. We have also chosen APOA1 alongside 
SNCA as a downregulated biomarker for ease of testing 
using a common plasma EV blood subtype and also due 
to its relation to PD such as risk of having mild cognitive 
impairment as reported by other literatures [105–107].

Metabolites analysis of various blood subtypes suggests 
8‑OhDG markers for PD patients
We studied 26 and 24 papers on metabolites upregula-
tion and downregulation in PD patients, respectively. 

The more commonly reported downregulated metabo-
lites in PD patients are Uric acid (12.5%), Catechol sulfate 
(8.33%) and Cis-aconitic acid (8.33%) (Table  4). When 
examining the specific blood subtypes, the percentage 
for uric acid increased from 12.5% to 33% in whole blood. 
On the other hand, the more frequently reported upregu-
lated metabolites across all studies are Proline (11.5%), 
8-OhDG (7.69%) and Alanine (7.69%) (Table 4). 8-OhDG 
was chosen as our choice of upregulated biomarker for 
ease of testing using a common whole blood subtype 
and also due to its relation to PD via oxidative stress as 
reported by others [108, 109].

Table 3 Analysis of top proteomic hits categorised by blood subtypes
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Overlap of biomarkers from multi‑omics integration likely 
to be true signal amongst false positives or false negatives 
artefact from omics methodologies
Given that there are usually more expressed genes 
relative to acquired samples, transcriptomic analy-
ses typically suffer from a lack of statistical power 
(curse-of-dimensionality) or produce many false 
positives/negatives due to erroneous assumptions on 
data distribution [110]. To counter such issues, more 
appropriate bioinformatics algorithms were devel-
oped such as DESeq2 [111] or limma-voom [112]. In 
addition, fluid-based proteomics also face many chal-
lenges and complexities. High abundance proteins 
such as albumin can mask low abundance proteins 
and must be removed to facilitate observation of lower 

abundance proteins. However, the removal of albumin 
might result in unintended removal of non-targeted 
low abundance proteins [113, 114]. Many peptides in 
serum also give highly intense signals that makes iden-
tification of endogenous peptides difficult. In addi-
tion, there is a wide array of technical variables that 
can influence the proteomic results [115]. Variables 
such as blood withdrawal site or simply letting serum 
samples sit beyond 60  min can lead to detection of 
false targets arising from hemolysis caused by residual 
disinfecting alcohol [116] or unwanted cell lysis [117] 
respectively.

The current way transcriptomics and proteomics 
are conducted and analyzed, may produce many false 
positives and false negatives. Multi-omics integration 

Table 4 Analysis of top metabolomic hits categorised by blood subtypes
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can value add by reducing the extent of false positives 
and false negatives presented. With the large amount 
of transcriptomics, proteomics, and metabolomics 
data available, targets that are repeatedly reported as 
common across the different omics layers are more 
likely to be true signals rather than technical artefacts. 
We define a cross-omics agreement rate as the inter-
section of transcriptomics and proteomics set of tar-
gets divided by the minimum number of targets of the 
2 sets [ie. A ∩ B/min(A, B)]. Analysis between the lists 
of compiled upregulated mRNAs and proteins identi-
fied 53 overlaps (13.7%) amongst the 2515 mRNAs and 
386 proteins reported by the various studies. Simi-
larly, between the lists of compiled downregulated 
mRNAs and proteins, there were 66 overlaps (12.9%) 
amongst the 1504 mRNAs and 508 proteins reported 
by the various studies. However, not all mRNA expres-
sion is positively correlated with protein expression 
[118]. Hence, we examined cross-omics agreement 
regardless of direction of expression as well. There 
was an increase in percentage overlap with a total of 
211 overlaps (23%) between the 4019 mRNAs and 894 
proteins reported by the various studies. The Hyper-
geometric test is an important statistical instrument 
used to estimate the probability of chance occurrences 
of overlapping genes between 2 genes sets [119]. 
Using the phyper() function in R and the assumption 
of 19,950 protein coding genes in the GRCh38 human 
genome [120], cross-omics biomarker overlap between 
all mRNAs and proteins reported is significant (p-
val = 0.005339753). This suggests that overlapping 
biomarkers via multi-omics integration are likely true 
signals and should be further validated, including our 
proposed biomarkers SNCA and Arg1.

Both transcriptomics and proteomics point to common 
theme of neuroinflammation and metabolic processes 
despite seemingly different list of biomarkers
Omics technologies can easily produce a large number 
of differentially expressed targets which is often over-
whelming for researchers to look at individually. Hence, 
a common strategy is to identify the higher-order func-
tional perspective by summarizing observed differential 
genes in light of their parent pathway (for instance, via 
DAVID) [121]. Pathway analysis can improve experiment 
credibility by locating the most important pathways. For 
instance, when the protein list from each study was ran 
through EnrichR to obtain pathways affected for each 
study (Table  5), 33% reported downregulation of Com-
plement and coagulation cascades for proteomics (vs 
17% overlap in protein targets). Pathway analysis may 
also reduce the study’s scope to a few hundred pathways 
rather than thousands of DEGs. Hence, in addition to 

intersections analysis, we exploited popular public repos-
itories like Gene Ontology (GO) to study the pathways 
associated with PD.

We observed unifying themes for GO pathways derived 
from the compiled list of transcripts and proteins (Fig. 2). 
We pooled together upregulated differentially expressed 
genes from all the literature analysed and ran a pathway 
analysis using enrichGO function from clusterProfiler 
package in R (v4.0.5). The same was done for downreg-
ulated DEGs, upregulated proteins and downregulated 
proteins. Significant GO pathways from upregulated 
DEGs point towards IL6 and immune system changes, 
which were also observed in significant GO pathways 
from upregulated proteins. A study by Fielding et  al. 
reported that IL6 is the key signal for neutrophil traf-
ficking during inflammation, chemokine production and 
leukocyte apoptosis [122]. Similarly, we observed signifi-
cant pathways of IL6 production, regulation of IL6 pro-
duction and positive regulation of IL6 production from 
upregulated DEGs, which were supported by significant 
pathways of neutrophil degranulation, neutrophil activa-
tion involved in immune response, cell killing and other 
inflammatory pathways involving MHC I from upregu-
lated proteins. Despite seemingly modest overlap in 
the list of upregulated DEGs and proteins, PD is associ-
ated with neuroinflammation when evaluated collec-
tively across omics layers as illustrated in the upset plot 
(Fig.  3A). The upset plot shows that different pathways 
were upregulated predominantly across the different 
omics, with neuroinflammation dominating transcrip-
tomics; amino acid metabolism dominating metabo-
lomics and blood related changes dominating proteomics 
(Fig. 3A).

Many significant pathways from downregulated DEGs 
and proteins are inflammation-related (eg. T-cell activa-
tion, lymphocyte proliferation and antigen processing / 
presentation). Other than neuroinflammation, the signif-
icant pathways from both downregulated DEGs and pro-
teins converged on downregulated metabolic pathways 
such as cellular response to toxic substance, hydrogen 
peroxide catabolic process, ubiquitin-dependent protein 
catabolic process and regulation of cellular amino acid 
metabolic process. This reaffirms the proposition that PD 
is a metabolic disease [123] and also demonstrated in the 
upset plot, where the top hits other than neuroinflamma-
tion are protein and lipid metabolism (Fig. 3B).

Inter i‑omics agreement on pathways can deepen 
confidence in selected biomarkers
The importance of integrating multi-layered studies is 
demonstrated when we observe how pathways across 
transcriptomics, proteomics and metabolomics cor-
roborate. Pathways for the list of compiled metabolites 
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Table 5 Related pathways across transcriptomics, proteomics and metabolomics

S No. Blood Component Top 10 pathways affected Level in PD (compared to healthy controls)

Transcriptomics
1 Whole blood Nil Downregulated

Dilated cardiomyopathy, Hypertrophic 
cardiomyopathy, Cardiac muscle contraction, 
ECM‑receptor interation, Platelet activation, 
Arrhythmogenic righ ventricular cardiomyopathy, 
Antigen processing and presentation, Adrenergic 
signaling in cardiomyocytes, Focal adhesion,

Upregulated

2 Whole blood Nil Downregulated

Staphylococcus aureus infection, Complement 
and coagulation cascades

Upregulated

3 Whole blood Nil Downregulated

Osteoclast differentiation, Leishmaniasis, Tuber‑
culosis,

Upregulated

4 Whole blood Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Downregulated

5 Whole blood Nil Downregulated

Osteoclast differenciation, Natural killer cell medi‑
ated cytotoxicity, Antigent processing and pres‑
entation, B cell receptor signalling pathway, 
Graft‑versus‑host disease, Lysosome, Phago‑
some, Chemokine signaling pathway, Fc gamma 
R‑mediated phagocytosis, Tuberculosis

Upregulated

6 Whole blood Parkinson Disease, Perussis, Prion Disease, Hun‑
tington disease,

Downregulated

Nil Upregulated

7 peripheral blood mononuclear cells (PBMCs) Th1 and Th2 cell differentiation, Th17 cell differ‑
entiation, Epstein‑Barr virus infection, Toxoplas‑
mosis, Leukocyte transendothelial migration, 
Human immunodeficiency virus 1 infection, 
Tuberculosis, Leishmaniasis, Pathways in cancer, 
Human cytomegalovirus infection

Downregulated

Porphyrin and chlorophyll metabolism, Amoe‑
biasis

Upregulated

8 peripheral blood mononuclear cells (PBMCs) Sulfur metabolism, Collecting duct acid secre‑
tion, Glycine, serine and threonine metabolism, 
Porphyrin and chlorophyll metabolism, Malaria

Downregulated

9 Whole blood Nil Downregulated

Endocrine and other factor‑regulated calcium 
reabsorption, Nitrogen metabolism,

Upregulated

10 Whole blood / leukocytes Citrate cycle (TCA cycle), Pyruvate metabolism, 
Cocaine addiction, Aminoacyl‑tRNA biosynthesis, 
Amphetamine addiction, Salmonella infection, 
Parkinson disease, Prion disease, Huntington 
Disease, Amyotrophic lateral sclerosis

Downregulated

Nil Upregulated

11 peripheral blood mononuclear cell (PBMC) Autophagy, Mitophagy, RIG‑I‑like receptor signal‑
ing pathway, NOD‑like recptor signaling pathway, 
Shigellosis

Downregulated

Lysosome, Glycosaminoglycan degradation, 
Other glycan degradation, Glycosphingolipid 
biosynthesis, Phagosome, Sphinagolipid metabo‑
lism, Collecting duct acid secretion, Apoptosis, 
Tuberculosis, Synaptic vesicle cycle

Upregulated

12 Whole blood Nil Downregulated

Nil Upregulated
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Table 5 (continued)

S No. Blood Component Top 10 pathways affected Level in PD (compared to healthy controls)

13 peripheral blood mononuclear cells (PBMCs) Nil Downregulated

Inflammatory bowel disease, Cytokine‑cytokin 
receptor interaction, African trypanosomiasis, 
Malaria, Perussis, Leishmaniasis, Asthma, IL‑17 
signaling pathway, Hematopoietic cell lineage, 
Amoebiasis

Upregulated

14 Whole blood Nil Downregulated

15 Whole blood Ubiquitin mediated proteolysis, Protein process‑
ing in endoplasmis reticulum, Parkinson disease

Downregulated

Fructose and mannose metabolism, Inflamma‑
tory bwel disease

Upregulated

16 Whole blood Nil Downregulated

Arachidonic acid metabolism Upregulated

17 Peripheral blood Nil Downregulated

18 Blood Serum Nil Upregulated

Blood Serum Viral protein interaction with cytokine 
and cytokine receptor,

Upregulated

Proteomics
1 Plasma EV Parkinson disease, MAPK signaling pathway, Alz‑

heimer disease, Pathways of neurodegeneration
Upregulated

2 Plasma EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

3 Plasma EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

4 Plasma EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

5 Plasma EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

6 Plasma EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

7 Plasma EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration,

Upregulated

8 Plasma EV Ferroptosis, Prion disease, Pathways of neurode‑
generation,

Upregulated

9 Plasma EV Nil Upregulated

10 Plasma EV Complement and coagulation cascades, Staphy‑
lococcus aureus infection, Coronavirus disease, 
Vitamin digestion and absorption, African 
trypanosomiasis, Fat digestion and absorption, 
Cholesterol metabolism, PPAR signaling pathway, 
Pertussis, Platelet activation,

Downregulated

11 Plasma EV Proteasome, Gastric acid secretion, Endocytosis, 
Parkinson disease, Phagosome, Aldosterone‑
regulated sodium reabsorption, Salivary secre‑
tion, Adrenergic signaling in cardiomyocytes, 
Aldosterone synthesis and secretion, Glycolysis 
/ Gluconeogenesis, Endocrine and other factor‑
regulated calcium reabsorption,

Upregulated

Proteasome, Pentose phosphate pathway, 
Spinocerebellar ataxia, Prion disease, Parkinson 
disease, Amyotrophic lateral sclerosis, Hunting‑
ton disease, Pathways of neurodegeneration, Gly‑
colysis / Gluconeogenesis, Cysteine and methio‑
nine metabolism,

Downregulated

12 Serum EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

Nil Downregulated
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Table 5 (continued)

S No. Blood Component Top 10 pathways affected Level in PD (compared to healthy controls)

13 Serum EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Downregulated

14 Serum EV Asthma, African trypanosomiasis, Allograft rejec‑
tion, Graft‑versus‑host disease, Type I diabetes 
mellitus, Type II diabetes mellitus, Malaria, 
Legionellosis, Inflammatory bowel disease, Fc 
epsilon RI signaling pathway,

Upregulated

Thermogenesis, Citrate cycle (TCA cycle), Asthma, 
Oxidative phosphorylation, Non‑alcoholic fatty 
liver disease, Diabetic cardiomyopathy, Parkinson 
disease, Melanoma, Prion disease, Huntington 
disease,

Downregulated

15 Serum EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

16 Serum EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

17 Serum EV Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

18 Serum EV Complement and coagulation cascades, Platelet 
activation, Pertussis, Systemic lupus erythemato‑
sus, Neutrophil extracellular trap formation, ECM‑
receptor interaction, Hypertrophic cardiomyopa‑
thy, Coronavirus disease, Staphylococcus aureus 
infection, Dilated cardiomyopathy,

Upregulated

Complement and coagulation cascades, Pertus‑
sis, Staphylococcus aureus infection, Systemic 
lupus erythematosus, Coronavirus disease, 
Renin‑angiotensin system, Ferroptosis, Porphyrin 
and chlorophyll metabolism, Type II diabetes 
mellitus, Glutathione metabolism,

Downregulated

19 Serum EV Complement and coagulation cascades, Platelet 
activation, Coronavirus disease, ECM‑receptor 
interaction, Staphylococcus aureus infection, 
Neutrophil extracellular trap formation, Focal 
adhesion, , , ,

Upregulated

Allograft rejection, Staphylococcus aureus infec‑
tion, Autoimmune thyroid disease, Viral myocar‑
ditis, Systemic lupus erythematosus, Pertussis, 
Complement and coagulation cascades, Dilated 
cardiomyopathy, Chagas disease, Coronavirus 
disease,

Downregulated

20 Blood Plasma Complement and coagulation cascades, Coro‑
navirus disease, Neuroactive ligand‑receptor 
interaction

Upregulated

Complement and coagulation cascades, Staphy‑
lococcus aureus infection, Vitamin digestion 
and absorption, African trypanosomiasis, Fat 
digestion and absorption, Cholesterol metabo‑
lism, PPAR signaling pathway, Platelet activation, 
Neutrophil extracellular trap formation, Lipid 
and atherosclerosis,

Downregulated

21 Blood Plasma Nil Upregulated

Nil Downregulated

22 Blood Plasma PI3K‑Akt signaling pathway, ECM‑receptor 
interaction, Growth hormone synthesis, secretion 
and action, JAK‑STAT signaling pathway, Focal 
adhesion, Cytokine‑cytokine receptor interaction, 
Human papillomavirus infection, Neuroactive 
ligand‑receptor interaction,

Upregulated

Arginine biosynthesis Downregulated
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Table 5 (continued)

S No. Blood Component Top 10 pathways affected Level in PD (compared to healthy controls)

23 Blood Plasma ECM‑receptor interaction, Staphylococcus aureus 
infection

Upregulated

Pantothenate and CoA biosynthesis, Comple‑
ment and coagulation cascades,

Downregulated

24 Blood Plasma African trypanosomiasis, Malaria, AGE‑RAGE 
signaling pathway in diabetic complications, 
NF‑kappa B signaling pathway, TNF signaling 
pathway, Leukocyte transendothelial migration, 
Fluid shear stress and atherosclerosis, Cell adhe‑
sion molecules, Lipid and atherosclerosis,

Upregulated

African trypanosomiasis, Graft‑versus‑host 
disease, Malaria, Legionellosis, Inflammatory 
bowel disease, Pertussis, Antigen processing 
and presentation, Epstein‑Barr virus infection, 
Human T‑cell leukemia virus 1 infection, Human 
cytomegalovirus infection,

Downregulated

25 Blood Plasma Sphingolipid signaling pathway, Lysosome, Estro‑
gen signaling pathway, Autophagy, Apoptosis, 
Protein processing in endoplasmic reticulum, 
Tuberculosis, Diabetic cardiomyopathy

Downregulated

26 Blood Plasma ECM‑receptor interaction Upregulated

27 Blood Plasma Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration, MAPK signaling pathway

Upregulated

28 Blood Plasma Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

29 Blood Serum Nil Upregulated

Nil Downregulated

30 Blood Serum Cholesterol metabolism, Thyroid hormone syn‑
thesis, Complement and coagulation cascades

Upregulated

Vasopressin‑regulated water reabsorption Downregulated

31 Blood Serum Complement and coagulation cascades, Staphy‑
lococcus aureus infection, Platelet activation, 
Neutrophil extracellular trap formation, Corona‑
virus disease

Upregulated

Vitamin digestion and absorption, Fat digestion 
and absorption, Cholesterol metabolism, African 
trypanosomiasis, Lipid and atherosclerosis, PPAR 
signaling pathway, Complement and coagulation 
cascades, Platelet activation, Phospholipase D 
signaling pathway,

Downregulated

32 Blood Serum Nil Upregulated

Asthma, JAK‑STAT signaling pathway, Cytokine‑
cytokine receptor interaction

Downregulated

33 Blood Serum Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Upregulated

34 Whole Blood Parkinson disease, MAPK signaling pathway, Alz‑
heimer disease, Pathways of neurodegeneration

Upregulated

Parkinson disease, Alzheimer disease, Pathways 
of neurodegeneration

Downregulated

Metabolomics
1 Blood plasma Sphingolipid metabolism Upregulated

names not identified Downregulated

2 Blood plasma names not identified Upregulated

3 Blood plasma Citrate cycle (TCA cycle), Arginine biosynthesis Upregulated

NIL Downregulated
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Table 5 (continued)

S No. Blood Component Top 10 pathways affected Level in PD (compared to healthy controls)

4 Blood plasma Nicotinate and nicotinamide metabolism, Tyros‑
ine metabolism

Upregulated

Tryptophan metabolism Downregulated

5 Blood Plasma Steroid hormone biosynthesis Upregulated

NIL Downregulated

6 Blood Serum Arginine biosynthesis, Aminoacyl‑tRNA biosyn‑
thesis, Pantothenate and CoA biosynthesis, beta‑
Alanine metabolism, Glutathione metabolism, 
Alanine, aspartate and glutamate metabolism 
,Pyrimidine metabolism Phenylalanine, tyrosine 
and tryptophan biosynthesis, Tyrosine metabo‑
lism, D‑Glutamine and D‑glutamate metabolism, 
Nitrogen metabolism

Upregulated

Thiamine metabolism ,Taurine and hypotaurine 
metabolism, Pantothenate and Co biosynthe‑
sis, Glutathione metabolism, Glycine, serine 
and threonine metabolism, Cysteine and methio‑
nine metabolism

Downregulated

7 Blood Plasma Arginine biosynthesis, Butanoate metabolism Upregulated

Taurine and hypotaurine metabolism, Biotin 
metabolism, Lysine degradation

Downregulated

8 Blood Plasma Linoleic acid metabolism, alpha‑Linolenic acid 
metabolism

Upregulated

Glycerophospholipid metabolism, Glycosylphos‑
phatidylinositol (GPI)‑anchor biosynthesis

Downregulated

9 Blood Plasma Valine, leucine and isoleucine biosynthesis, 
Aminoacyl‑tRNA biosynthesis

Upregulated

Biosynthesis of unsaturated fatty acids, Linoleic 
acid metabolism

Downregulated

10 Blood Plasma Phenylalanine, tyrosine and tryptophan biosyn‑
thesis, Phenylalanine metabolism

Upregulated

NIL Downregulated

11 Plasma EV names not identified Upregulated

names not identified Downregulated

12 Serum EV names not identified Upregulated

names not identified Downregulated

13 Whole blood Glutathione metabolism Upregulated

Purine metabolism Downregulated

14 Whole blood names not identified Downregulated

15 Whole blood NIL Upregulated

NIL Downregulated

16 Blood Plasma Glycerophospholipid metabolism Upregulated

Biosynthesis of unsaturated fatty acids, Linoleic 
acid metabolism, Arachidonic acid metabolism, 
Synthesis and degradation of ketone bodies, 
Tryptophan metabolism

Downregulated

17 Whole blood Biosynthesis of unsaturated fatty acids, Arachi‑
donic acid metabolism

Upregulated

Biosynthesis of unsaturated fatty acids Downregulated

18 Blood Plasma Purine metabolism Downregulated

19 Blood Plasma NIL Upregulated

20 Blood Serum D‑Glutamine and D‑glutamate metabolism, 
Nitrogen metabolism, Arginine biosynthesis

Upregulated

Arginine and proline metabolism Downregulated
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(Table  5) were obtained using MetaboAnalyst 5.0 [124]. 
Arginine biosynthesis was the most frequent path-
way, followed by biosynthesis of unsaturated fatty acids 
and ROS related pathways like aspartate and glutamate 
metabolism and glutathione metabolism. The metabo-
lomic pathways exhibit great relevance to the transcrip-
tomic and proteomic pathways identified. Arginine has 
been shown to inhibit acute microglia-mediated inflam-
mation [125] while fatty acids can serve as inflamma-
tory response signalling molecules [126]. Additionally, 
glutathione metabolism is related to hydrogen peroxide 
catabolic process [127] that was picked up by proteomics. 
The interconnectedness across different biological lay-
ers comes to light with metabolomic pathways support-
ing the major neuroinflammation and metabolic themes 
highlighted by both transcriptomics and proteomics. 
Integration of cross omics findings can also result in 
greater confidence in differentiating targets with clini-
cal value amongst a pool of false positives. For instance, 
knowledge integration of our proposed biomarkers 
SNCA, ARG1 and 8-OhDG reveals complex biologi-
cal relationships. SNCA (α-syn) was shown to increase 
ARG1 in bone marrow derived macrophages [128], sug-
gesting that SNCA may be responsible for triggering 
inflammation and immune response. In turn, there is 
observable increase in 8-OhDG, as interestingly, ARG1 
also showed positive correlation with 8-OhDG levels 

[129]. Hence, via i-omics agreement, there is increased 
confidence in our proposed biomarkers.

Pathway changes with age, motor severity and medication 
status agrees with disease progression
Information on the age range, UPDRS III assessment and 
medication status were used to subset the cohort into 
younger or older (> 67yrs.old for transcriptomics and 
proteomics, > 65 for metabolomics), less or more severe 
(> UPDRS mean) and not medicated or medicated for 
further pathway analysis.

When segregated by age, transcriptomics of younger 
patient cohorts exhibited downregulation in detox and 
oxidative stress response pathways and upregulation of 
movement related pathways. Older patient cohorts sub-
sequently exhibited upregulation of IL6 and inflamma-
tion pathways. In terms of proteomics, both young and 
old cohorts experienced dysregulation of various immune 
response. Younger cohorts also experienced downregula-
tion of TCA cycle related metabolites.

We divided the cohorts obtained from studies that 
reported UPDRS III values based on their UPDRS scores 
(into low: < 22 for transcriptomics and proteomics, < 18 
for metabolomics and high). At low UPDRS III scores, 
transcriptomic changes mainly involved downregula-
tion of autophagy and upregulation of lipid metabolism 
related processes which was supported by metabolomic 

Table 5 (continued)

S No. Blood Component Top 10 pathways affected Level in PD (compared to healthy controls)

21 Blood Serum Arginine and proline metabolism, Arginine 
biosynthesis

Upregulated

Arginine biosynthesis Downregulated

22 Blood Serum Histidine metabolism Upregulated

NIL Downregulated

23 Blood Serum Sphingolipid metabolism, Glycerophospholipid 
metabolism, Arginine and proline metabolism

Upregulated

Arginine biosynthesis Downregulated

24 Whole blood Biosynthesis of unsaturated fatty acids Upregulated

Butanoate metabolism, Alanine, aspartate 
and glutamate metabolism, Arginine and proline 
metabolism, Nitrogen metabolism, D‑Glutamine 
and D‑glutamate metabolism

Downregulated

25 Blood Serum Tyrosine metabolism, Phenylalanine, tyrosine 
and tryptophan biosynthesis, Ubiquinone 
and other terpenoid‑quinone biosynthesis, Phe‑
nylalanine metabolism, Arginine biosynthesis

Upregulated

Tryptophan metabolism, caffeine metabolism Downregulated

26 Whole blood Citrate cycle (TCA cycle), Glyoxylate and dicarbo‑
xylate metabolism, Pyruvate metabolism, Galac‑
tose metabolism,Alanine, aspartate and gluta‑
mate metabolism

Downregulated

27 Blood Serum NIL Upregulated
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changes involving steroid hormone and fatty acid metab-
olism. Interestingly, proteomic changes at low UPDRS 
highlighted downregulation of many pathways involving 
dopamine uptake and biosynthesis as well as protein sta-
bility suggestive that changes start at low UPDRS status 
which leads to disease progression.

Lastly, the transcriptomics of drug-naïve patient 
cohorts generally exhibited downregulated ROS process-
ing and upregulated IL-6 production and inflammation. 
Downregulated phagocytosis but upregulated defence 
response to bacterium, killing of symbiont cells and 
immune responses were observed in proteomics. Meta-
bolically, drug-naïve patient cohorts had downregulated 
energy production related to citrate cycle and pyruvate, 
but upregulated arginine and tryptophan metabolism 
related to inflammation as previously discussed. Inter-
estingly, the drug treated patient cohorts showed some 
counteracting pathways. When treated, the transcrip-
tomics of medicated patient cohorts had downregulated 
T cell activation and upregulated regulation of immune 

responses. Downregulated post translational pro-
tein modification and upregulated antigen processing, 
response to stress and protein removal were observed 
in proteomics. Metabolically, medicated patients had 
downregulated biosynthesis of unsaturated fatty acid and 
upregulated arginine biosynthesis. Taken together, medi-
cation had a positive effect on reducing inflammation 
and regulating protein stress. These pathway changes 
should however be taken with caution as they were not 
derived from paired studies of before and after treatment 
of the same patient but instead via comparison of differ-
ent cohorts.

Taken together, by comparing age, motor severity and 
medication status, we observed that older, more severe 
and unmedicated patient cohorts exhibit dysregula-
tion in energy [130], inflammation [131], lipid [132] and 
dopamine related pathways [133] which are in agreement 
with disease progression. A further examination of our 
6 proposed biomarkers revealed preferences for differ-
ent age, motor severity and medication status (Table 6), 

Fig. 2 Gene Ontology (GO) Biological Processes (BP) Pathway Analysis indicates immunological and metabolic implications. A GO—BP 
pathways for compiled upregulated protein list. B GO – BP pathways for compiled upregulated transcript list. C GO—BP pathways for compiled 
downregulated protein list. D GO – BP pathways for compiled downregulated transcript list
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with the majority of the biomarkers favouring detection 
of younger PD patients. In agreement with our findings, 
previous studies have also identified reduced levels of 
APOA1 [134, 135] and uric acid [136] to be associated 
with greater motor severity.

Standardisation of analysis and UPDRS patient staging 
can improve reproducibility and accuracy of biomarker 
identification
We observe modest overlap in agreement of targets across 
studies. However, this is unsurprising since the statistical 
thresholds, and multiple test corrections used in each inde-
pendent study differed. We demonstrate this point by com-
paring the results produced via publicly available database 
and analytical tools on Gene Expression Omnibus (GEO) 

Fig. 3 Upset Plots Reveal Different Pathway Changes Dominated Different Source of Omics Analysis. A Upset plot for all pathways upregulated. 
Inflammation, amino acid metabolism and blood related changes dominated transcriptomics, metabolomics and proteomics respectively. B Upset 
plot for all pathways downregulated. Inflammation, Lipid metabolism and combination of Inflammation, Protein modification, Metabolic processes 
and polarity dominated transcriptomics, metabolomics and proteomics respectively

Table 6 Preference for age, UPDRS scoring and medication 
status of our proposed biomarkers. (‑) indicates no information or 
no preference

UP Arg1 SNCA 8‑OHdG
Age Younger Younger ‑

UPDRS ‑ High ‑

Medication ‑ No medication Medication

Down SNCA APOA1 Uric Acid
Age Younger Older Younger

UPDRS ‑ High [134, 135] High [136]

Medication ‑ Medication Medication
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repository and those reported by the original literature. 
We analyzed five microarray datasets to detect DEGs in 
PD patients, including GSE62283, GSE165083, GSE22491, 
GSE100054, GSE99039 datasets. Using the inbuilt GEO2R 
function on GEO repository and an intersection analy-
sis (adjpvalue < 0.05, logFC > 1|logFC < -1) for the 5 data-
sets coded using R, we found that the most upregulated 
DEGs are CLTCL1, COMMD6, GNS, HGSNAT, LAMP2, 
LSM 3.00, LSMEM1, MANBA, SCARB2, SDPR, TCIRG1, 
and TPP1 as appeared twice in those microarray data-
sets (Table  7), while a lack of overlapping upregulated 
DEG is detected from the corresponding literature papers 
(Table  7). The full table of analysis from GEO2R can be 
found in Supplementary Table  5. Furthermore, the cor-
responding literature papers suggested BCL2 (using 
GSE6613 and GSE22491 datasets) [31, 33] and TRAF6 
(using GSE99039 and GSE22491 datasets) [30, 31] are the 
most downregulated DEGs in PD patients, while a lack of 
overlapping downregulated DEG is identified using GEO2R 
analysis (Table 7). Interestingly, we found that XIST is more 
upregulated, and EIF1AY and KDM5D are more downreg-
ulated in females than in male PD patients using GSE7475 
and GSE100054 datasets (Table  7), but this phenomenon 
has not been documented thus far. The lack of consistent 
overlapping DEGs between GEO2R analysis and the corre-
sponding literature papers may be due to non-obvious con-
founding or batch factors that were known and corrected 
by the authors but not available in the inbuilt GEO2R func-
tion on GEO repository or due to our strict foldchange 
cut-off. In addition, the lack of overlapping genes seen in 
RNA sequencing data can also be attributed to the differ-
ent analysis packages used (ie DESeq2 and edgeR). Deal-
ing with these issues requires good quality meta-data. We 
therefore propose for more transparency in batch effects 
and standardisation of analysis pipelines by various studies 
to enhance reproducibility of results.

Another observation was that studies do not prop-
erly synchronize and stage patient severity (or not pub-
lished) via the universal UPDRS scale (~ 30% among our 
reviewed papers did not use UPDRS), which makes it dif-
ficult to properly find early diagnostic markers. In addi-
tion, some papers classified early PD as Hoehn and Yahr 
stage ≤ 2 [46], while other papers used Hoehn and Yahr 
stage 1 to 3 [14]. This means that they are not comparing 

patients at the same time point and given how PD is a 
progressive disease, it is thus expected that different tar-
gets will be reported. Clearly, there is a need for better 
alignment between researchers and their clinician part-
ners on how patient samples should be categorized and 
stored. A community-wide standardized framework for 
characterizing patient’s PD status and disease severity 
using the UPDRS scale with a defined range of scores that 
distinguishes early PD from advanced PD patients would 
be useful. We also recommend that researchers use sam-
ples from the same PD staging and treatment to minimise 
confounding factors. This will aid in better comparisons 
and understanding of omics changes in PD progression.

Future directions: human‑microbe i‑omics
The gut microbiome is an exciting area to explore for 
PD given the emerging acceptance of a gut-brain axis in 
the pathogenesis of sporadic PD [16, 137]. Supporting 
the hypothesis, gut microbiome alterations have been 
reported by Toh et  al., namely increased Akkermansia 
and reduced Roseburia in PD patients [138]. In addition, 
Sampson et  al. also demonstrated that gut microbiome 
from PD patients can induce enhanced motor deficits 
when introduced into germ-free mice [139]. With the 
average 70 kg adult male hosting a total of 39 trillion bac-
teria in the body, humans are thus considered as supra-
organisms and subjected to mutualistic microbiota-host 
interactions [140]. Microbiomics hence hold great poten-
tial to identify new ways to screen risk factors, diagnos-
tic factors and therapeutics to various human diseases 
[141] such as PD. Future research can focus on studying 
human-microbe interactions by integrating genomic, 
proteomic and metabolic analysis, which can lead to 
some novel and interesting insights.

Concluding remarks
We analysed 79 papers related to transcriptomics, prot-
eomics and metabolomics profile of PD. Individual omics 
platforms revealed potential in identifying PD blood-
based biomarkers with increased reporting rates when 
grouped by blood subtypes, suggesting that different 
blood subtypes reflect different expression changes. Our 
study integrating the different omics datasets have vali-
dated SNCA as a potential useful biomarker and suggest 

Table 7 GEO2Ranalysis of top transcriptomic hits categorised by blood subtypes
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Arg1 expression, APOA1 protein level and two metabo-
lites (WB) – 8-OHdG and uric acid could add further 
value as additional biomarkers. It is also possible that 
some of these potential biomarkers are more sensitive 
or specific for certain PD subtypes (tremor dominant, 
gait disorder etc.) and these should be further validated 
in future studies. Corroboration of targets from different 
omics platforms can help overcome the false positives / 
negatives artefacts from current omics methodologies. 
Interestingly, when we pool all the genes and proteins 
together, there is indication of immunological and meta-
bolic implications for pathways associated with PD. Neu-
roinflammation and metabolic disruption are common 
themes around the pathogenesis of PD, suggesting that 
despite the seemingly different biomarkers, i-omics agree 
in terms of overarching pathways. We also demonstrated 
how knowledge integration of cross omics findings show 
that our proposed targets SNCA, ARG1 and 8-OhDG 
work in the same pathway and increase our confidence 
in the proposed biomarkers. While current methodolo-
gies can yield biomarkers with potential for PD diagnosis, 
there can be greater transparency by authors in terms of 
the data cleaning and processing for greater reproduc-
ibility. Different data corrections used and thresholds 
selected for differential expression will naturally lead to 
different targets reported. Publicly available datasets 
from some of the 79 papers analysed using tools on GEO 
database resulted in different sets of targets reported 
by the literature. Lastly, we suggest that future studies 
standardise the usage of UPDRS scale and analyse sam-
ples from the same PD staging to minimise confounding 
factors for more accurate biomarkers. We also propose 
future research to make use of i-omics to gain deeper 
understanding of PD progression via human-microbe 
interactions related to the proposed the gut-brain axis 
in PD, the clarification of which holds promise to reveal 
prodromal markers for the disease.
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