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Abstract

Background: Even as the eukaryotic stranded DNA is known to heterochromatinize at the nuclear envelope in response to
mechanical strain, the precise mechanistic basis for alterations in chromatin gene transcription in differentiating cell lineages has
been difficult to determine due to limited spatial resolution for detection of shifts in reference to a specific gene in vitro. In this
study, heterochromatin shift during euchromatin gene transcription has been studied by parallel determinations of DNA strand
loop segmentation tropy nano-compliance (esebssiwaagoTq units, linear nl), gene positioning angulation in linear normal two-
dimensional (2-D) z, y~vertical plane (@nglemetry, 9, horizontal alignment to the z x-plane (vectormetry; m,, my, a.u), and by
pressuromodulation mapping of differentiated neuron cell sub-class operating range for neuroaxis gene expression in reference
to tissue macro-compliance (Peg).

Methods: The esebssiwaagoTy effective pressure unit (Peg) maxima and minima for horizontal gene intergene base segment
tropy loop alignment were determined (n = 224); the Peg esebssiwaagoTa quotient were determined (n = 28) for analysis of
gene intergene base loop segment tropy structure nano-compliance (n = 28, n = 188); and gene positioning anglemetry and
vectormetry was performed (n=42). The sebs intercept-to-sebssiwa intercept quotient for linear normalization was determined
(Dsebs/Dsepssina) Y €xponential plotting of sub-episode block sum (sebs) (x;, y1; xo, y5) and sub-episode block sum split integrated
weighted average (sebssiwa) functions was performed, and the sebs — sebssiwa function residuals were determined. The
effective cell pressure (Pog)-to-angle conversion factor was determined, ©, = (1E +02) {0.90 — [(0.000 + a = x < 0.245) (1.208)]
form was applied for anisotropic gene anglemetry, and the ©,= (1E +02) {0.90 — [1.208 (0.245 = x < m)] form was applied for
mesotropic gene anglemetry. Two-step Tukey range t-test was performed for inter-group comparisons of beepy/Dsepssiva
quotients and sebs — sebssiwa normalized residuals between tier 1 (Pos < 0.200; n=11) and tier 2 (Pe¢> 0.200 < 0.300; n =6),
between tier 1 and tier 3 (P.¢ > 0.300; n = 8), and between tier 3 and tier 2 (a=0.05).
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Results: Based on the results of this study, I) heterochromatin strand DNA loop micro-segmentation structural nano-
compliance is either amorphousity, anisotropy or mesotropy loop segment forms perceiving various grades of the asymmetric
tropy viscosity effect, where between 3-to-5 and 8-to-11 genes are arranged as one or two in-tandem alternating anisotropic
and mesotropic gene(s), or as in-tandem anisotropic or mesotropic genes in juxtaposition separated by intergene tropy base
distance; for example, the anisotropy loop segment form between positions — 12 to + 15 in reference LMNA
(Pafr, 0.184; GA:68.4O) on human 1922 (+) is: 5-0.234-(a_ 15)-0.272 (m_11)-0.229 (a_10)-0.211 (a_)-0.269 (Mm_yg)-
0.144 (a_-)-0314 (M_¢)-0.268 (M_5)-0.176 (a_4)-0.260 (m
0.395 (M, 5)-0.146 (a4 3)-0.212 (a4 4)-0.336 (M, 5)-0.287 (M, ¢)-0.153 (a,7)-0.283 (M, )-0.193 (a, ¢)-0.269 (M, 10)-
0.199 (a, 11)-0.146 (a2, 1,)-0.190 (a; 13)-0.188 (a, 14)-0.243 (a, 15)-3', which begins at the 5" end with DAP3 (Pus
0.234); Il) mesotropy loop form genes are positioned between 11.7 and 60.4° (CD34) in the z, y-vertical plane,
whereas anisotropy loop form genes positioned between 60.5 and 82.3% (MIR4537) in the z, y-vertical plane; Ill) the
relationship between effective pressure and momentum is inverse proportionality, Pegs (0.064 2 x < 0.245) - mp = P
(0.245 2 x £0.648) - my; IV) the interval for peripheral lower motor neuron (Imn) gene expression is definable as being
between a Pu of 0434 and 0311 (> 0.305), between a Pt of 0.305 and 0.213 for cerebrocortical upper motor neurons,
between a Py of 0318 and 0.203 for hippocampocortical neurons, and between a Pt of 0.298 and 0.217 for basal
ganglia spiny neurons; therefore, there exists an inverse relationship between effective range of whole cell compliance
and tissue macro-compliance (Reftective whole cell compliance * Tmacro-compliance = K), i which case the range for mesenchymal
cell (MSC) gene expression is delineable as being between a Peff of 0648 and <= 0.118 esebssiwaagoTQ units; and V)
RGS18 (Puy 0.205; By = 65.2%, RGS16 (Puy 0.251; By = 59.7% human paralog of murine RGS4), Inc-RXFP4-5 (Pug 0.314; By =
52.1% pituit), RGS13 (Pes; 0.360, Oy = 46.5°), CEACAMI (Po; 0.384; By = 43.6%), SLC25A44 (Pog; 0.395; Oy = 42.3°%) and RGS21
(P 0413; Oy =401 are expressed within the lower motor neuron (Imn)-upper motor neuron (umn) neural cell axis; and
TSACC (P.g; 0.336; Oy = 494% and JUND (P, 0.344; Oy = 484% are non-cell specific developmental biomarkers.

Conclusions: Based on the findings of this study considered together, the precise mechanistic basis for alterations in
chromatin gene transcription eukaryotic stranded heterochromatin arranged by structural pressurotopy nano-compliance
in DNA stand loop segments is effective cell pressure (P regulated shifting of transcriptionally active DNA in-between
the inner nuclear envelope margin and the peripheral nucleoplasm edge and the z x-plane horizontal alignment of a
gene by gene specific P.¢ within the cell specific effective range of whole cell compliance in reference to tissue macro-
compliance. The findings of this study are therefore applicable to the further study of changes in gene transcription in
response to applied mechanical strain-mediated alterations in nuclear envelope deformability in silico.
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Introduction

Non-constitutively less active heterochromatin and consti-
tutively more active heterochromatin commonly known as
euchromatin are the two forms of eukaryotic euchromatic
chromatins [1-5]. Adenine and thymine nucleobase-rich
G-banded DNA of heterochromatin binds to less hydro-
philic staining dyes such as 4’,6-diamidino-2-phenylindole
(DAPIL -4.37 nm™") with cationicity sufficiently separated in
space (1+ SS 1+), whereas guanine and cytosine nucleo-
base-rich R-banded DNA of constitutive heterochromatin
(euchromatin) binds to more hydrophilic dyes such as Oli-
gomycin (-6.75 nm™") with polyhydroxylated hydrophilicity
sufficiently separated in space (OH SS OH), which is more
transcriptionally-active due to protein affinity interactions
of the same [5, 6], both of which are loosely wound around
the nucleosome core histone proteins in the pressurized
state of a cell. Adenine and T-rich G-banded non-constitu-
tive heterochromatin resides in affinity with non-histone
polypeptides lamin A/C or B1/B2 [7-13], from which genes

are episodically-transcribed in fully-differentiated cells
[1-5], in contrast to G and C-rich R-banded constitutive
heterochromatin resides in affinity with nuclear pore com-
plex subunits rather than in affinity with the lamins and
lamin-associated proteins, from which regulatory house-
keeping genes are transcribed [1-5, 11]. During the G, rest-
ing transcriptionally active cell stage, both of the
chromatins are located in one of two locations in the nu-
cleus, either at the inner nuclear membrane-bound to
lamins A/C or B1/B2 via lamin-associated polypeptides
(LAP) polypeptides (LAP) 1 and 2 isoforms and emerin
(EMD), or closer to the center at peripheral edge central
nucleoplasm interface during the non-transcription of
lamin/lamin-associated polypeptides [14—18], during which
there is differential gene transcription [15] in comparison
to that at the inner nuclear membrane in apposition to nu-
clear pore complex subunits [16].

During the DNA synthesis stage [1-3], both forward
and reverse strands of early and late-replicating
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chromatins become DNA polymerase substrates when
replication forks form at defined intervals resembling
radial loops at the inner nuclear membrane [19-22], a
process that continues at the nuclear envelope to the
point of MKI67 protein expression [23], which is a 359
kDa G, interphase enzyme involved in translocation of
tetraploid chromatin from the inner nuclear mem-
brane to the nuclear center by mass effect, as the
nuclear envelope dissolutes and chromatids align at
the metaphase plate. A mass effect mechanism has
been suggested for horizontal alignment of DNA dur-
ing the S phase is the 900 kDa molecular weight of
multi-subunit DNA polymerase during which multiple
assembled DNA polymerases simultaneously walk for-
ward (+) or reverse (-) strand intergene segments at
replication forks based on recent determinations that
during the process of gene transcription the DNA
synthesis (S;) phase begins when effective cell pres-
sure (P.g) increases into the 0.261 to 0.283 (PCNA)
pressure units range [24—28].

Nuclear envelope elastance (E) responses to pressure
application and alterations in initial envelope elastance
to tonicity or dynamic strain over time have been stud-
ied by micropipette aspiration techniques in LMNA (-/-)
or emerin (EMD, -/y) gene-deficient cells (/, creep com-
pliance; kpa':sec’; a power) [29-35]; cell morphology
alterations in response to grades of substrate stiffness
have been studied by spectrophotometry of gel viscoelas-
ticity (G’; Pa) and cell tissue tensional homeostasis by
traction force microscopy [36, 37]; and cell mechanosen-
sitivity changes and nuclear deformability alterations in
response to mechanical loading during pharmacological
application in vitro studied by the chromatin condensa-
tion parameter (CCP, %) and the nucleus deformability
index (NDI, %; NAR, a.u.) [38—41], in addition to differ-
ential gene transcription in mesenchymal stem and
transformed cells studied in situ by qRT-PCR mRNA
expression, based on the findings of which mechano-
force transduction can be defined as downstream
molecular signaling events that result in alterations in
chromatin gene transcription [28].

It has been recently hypothesized that alterations in cell
membrane compliance in relation to mitochondrial mem-
brane compliance results in increases or decreases in
effective cell pressure secondary to that alterations in cell
membrane compliance by membrane domain-binding of
growth factors and small molecule ligand binding to cell
surface receptors [24-27]. The modes of cellular
pressurization in the biological system in vivo is have been
further defined as the combination of (a) synergistic posi-
tive macro-pressuromodulation due to the presence of a
rigidified extracellular matrix or cortical bone, which
increases effective cell pressure, or non-synergistic nega-
tive macro-pressuromodulation due to the presence of
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surrounding cells, which decreases effective cell pressure;
and (b) positve or negative micro-pressuromodulation at
cell membrane domains by way of endocrine, paracrine
and autocrine small molecule hormones, growth factors
and cytokines, which either increases or decreases effect-
ive cell pressure. Therefore, the effective cell pressure for
horizontal alignment of gene tropy and maximal gene
transcription is related to cell compliance by Compliance-

cell membrane micro-pressuromulation T Elastcmceceu membrane integ-

rin-to-collagen or sub-cortical bone

Pressurecgiective intracellular = K during synergistic macro-
pressuromodulation, and by Compliance e membrane micro--

macro-pressuromodulation

pressuromulation ~ ElﬂStﬂl’lC@cen junction-to-cell junction macro-pressur-
omodulation Pr €SSUTCeffective intracellular = k during non-
synergistic macro-pressuromodulation, where Pyg.csive intra-
cellular (Peff) = Pqﬁ’ective intranuclear:

A fractional measure has been recently developed to
quantify the effective intracellular pressure required to
horizontally align a gene for its maximal transcription,
as there are non-specific avidity associations of nuclear
protoplasm proteins and non-coding RNAs in a tropic
manner with the intergene segment bases of genes
located upstream and downstream with respect to a
gene; and represents the 5 — 3’ reading direction inter-
gene distance tropy that needs to be overcome for a
gene to horizontally align for transcription and has a
specificity and sensitivity of 100% as validated [25]. This
measure, the episodic sub-episode block sums split-inte-
grated weighted average-averaged gene overexpression
tropy quotient (esebssiwaagoTq). The esebssiwaagoTq, a
physical property of a gene, is less than 0.245 units for
infra-pressuromodulated anisotropic genes, and in be-
tween 0.245 and 0.745 units for supra-pressuromodulated
mesotropic genes.

Even as the eukaryotic stranded chromatin has
shown to be heterochromatinized to various degrees
at the nuclear envelope in response to application of
mechanical strain in vitro, the precise mechanistic
basis for alterations in chromatin gene transcription
in differentiating cell lineages has been difficult to
determine due to limited spatial resolution for detec-
tion of shifts in reference to specific genes in vitro.
Therefore, in this study heterochromatin DNA strand
loop structure gene positioning angulation in the z, y-vertical
plane is studied by segmentation of DNA strand loops in
terms of mesotropy and anisotropy utilizing the sebs
intercept-to-sebssiwa intercept linearization quotient,
Dgebs/Dsebssiwa, for validation of linear normalization
and the effective cell pressure unit (Pg) -to-gene
angulation conversion factor for gene anglemetry and
momentum vectormetry analysis in linear nl two-di-
mensional (2-D) protoplasmic cell space; henceforth,
these normalized heterochromatin gene angulation
parameters are applied for determination of the
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esebssiwaagoTq-based pressuromodulation map for
gene expression of the subtypes of neuronal cells that
constitute the peripheral to central nervous system
neuroaxis in correlation with changes in tissue
macro-compliance.

Methods

Selection of genes for study

Human chromatin forward and reverse strand genes
were sampled from 17 of 24 chromosome loci for deter-
mination of minima and maxima effective intracellular
pressure unit (P.g) for the episodic sub-episode block
sums split-integrated weighted average-averaged gene
overexpression tropy quotient (esebssiwaagoTq), n = 224
[25—-27]; the sampled representative genes include ch 14
(n = 188, heavy chain immunoglobin locus, native and
recombined) [26, 27], ch 1 (PDPN, S100A2, SI00A14,
CDHI1, SELE, CD34, PTPRC and CR2; n = 8), ch 2
(TGFA), ch 3 (ACPP), ch 4 (CD38), ch 6 (PRR3, PRDMI,
ENPPI), ch 7 (ABCB1, FOXP2), ch 10 (MRCI1, MKI67),
ch 11 (SORL1, MS4A1, RAGI1, RAG2), ch 12 (BTGI,
CD27, AICDA, ESPLI), ch 14 (IFI27), ch 16 (CDH11,
CD19), ch 17 (CD79B), ch 16 (PHLPP, ZCCHC2), ch 19
(CD79A), ch 20 (CD20, PCNA), ch 22 (APOBEC3A,
APOBEC3, APOBEC3H) and ch 23-X (DMD) [25-27].
Three different sets of additional genes were selected for
study: 1) twenty-eight sequentially located protein
coding and non-coding RNA genes in native positions
on the Ch 1 q arm forward (+) strand in reference to
LMNA for the Py esebssiwaagoTy-based sub-analysis
study of native intergene base loop segment tropy
structure nano-compliance (n = 28); 2) protein coding
genes located on various chromosomes and overex-
pressed during cell differentiation were selected for
P esebssiwaagoTq-based sub-analysis study of gene
angulation positioning in the linear normalized z, y-verti-
cal plane and momentum vectormetry to the z, x-horizon-
tal plane (n = 28), and include genes involved in cell
membrane adhesion (CD34, CEACAM]I), cell membrane
ligand binding (INSL3, ENPPI), extracellular matrix
formation (COL1A1, COL2A1, COL6AI1, CCN2), cell cycle
regulation (RGS13, RGS4, RGSI), inner nuclear envelope
matrix stabilization (LMNA, LMNBI, LMNB2, EMD,
NUMAI), transcriptional regulation (MYC, JUND,
SOX18, PRKCH, EGRI, ESRRB, GABPA, NFE2L2), NFkB
survival pathway (/ER3), oxygen sensing (CYGB), and in
B-cell function (PRDM1, MIR4537); and 3) protein coding
genes located on various chromosomes and overexpressed
during central-to-peripheral neural cell differentiation
were selected for predictive sub-analysis study of neural
axis gene overexpression in reference to tissue macro-
compliance by esebssiwaagoT-based effective intracellu-
lar pressure units (n = 14), and include genes involved in
neurotransmitter ligand binding (DRDI1, DRD2, DRD3,
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GRINTI), synaptic cleft stabilization (UNC13A, SHANK?2),
cell cycle regulation (RGS2I1, RGS2, RGSI16, RGSIS8),
nuclear RNA splicing (RBFOX3), transcriptional regula-
tion (SOX1, SOX14), and in oxygen sensing (NGB).

Gene locus coordinates were mined as per the
GRch38/hg38 gene location classification system at Gene
Cards  (https://www.genecards.org) and LNCipedia
(https://Incipedia.org). Genes were stratified by gene locus
episode and initial sub-episode block structure (SEB) as
either Episode 2 (> 11,864 < 265,005 bases; 5 SEB),
Episode 3 (< 11,864; 7 SEB) and for Episode 4 (>265,
005 <607,463; 9 SEB), Episode 5 (> 607,463 < 2,242,
933; 11 SEB) or Episode 6 (> 2,242,933; 13 SEB) to
determine the initial sub-episode block structure count
for determination of the episodic sub-episode block sums
split-integrated weighted average-averaged gene overex-
pression tropy quotient were determined [25-27].

Determination of native gene location intergene base
segment loop tropy and strand loop structure in
reference to LMNA

The sequentially located gene locus gene loop segment tropies
in reference to LMNA on ch 1q22 (+) for sub-group structural
analysis included DAP3, MSTO2P, PIR32612, LOC100132108,
SYT11, GCO1P155896, Inc-RXFP4-5, RXFP4, Inc-RXFP4-2,
ENSG00000224276 | LOCI05371729, GCO0IP156042
(LAMTOR?2), RAB25, LMNA, SEMA4A, SLC25A44, PMFI-
BGLABR, TMEM?79, TSACC, RHBG, ENSG00000237390, Inc-
TTC24-5, Inc-TTC24-4, ENSG00000260460, Inc-TTC24-1,
GC01P156524, TTC24, NAXE, HALPN2 and BCAN from 5
to 3’ end (1 = 28).

The esebssiwaagoTq-based X intergene base segment
tropy was determined as the integrated upstream part
anisotropic sub-episode block sum (uppasebs), down-
stream part anisotropic sub-episode block sum (dppa-
sebs), the upstream part mesotropic sub-episode block
sum (uppmsebs) and the downstream part anisotropic
sub-episode block sum (dppasebs) by the final sequen-
tially integrated (J) paired point tropy quotient (prpTg)
point of final sub-episode block structure based on
which the gene intergene base segment loop structure
was determined in terms of segmental anisotropy, seg-
mental mesotropy or segmental amorphousosity for the
respective genes in native configuration in reference to
the LMNA gene locus.

Determination of the linearization quotient for z, y-plane
gene anglemetry by exponential function plotting of sebs
and sebssiwa

Genes selected for sub-group analysis anglemetry in-
clude episode 2 (n = 14), episode 3 (n = 11), episode 4
(n = 2) and episode 6 (n = 1), n = 28. Episode 2 genes
selected for sub-group study include (ch, strand) LMNA
(1q22, +), RGS13 (1q31.2, +), CD34 (1q32.2, -), LMNBI


https://www.genecards.org
https://lncipedia.org

Sarin Translational Medicine Communications (2019) 4:13

(5232, +), PRDMI1 (6q21, +), ENPPI (6q23.2, +),
NUMAI (11q133-q134, -), COL2A1 (12q13.11, -),
ESRRB (14q24.3, +), COLI1IA1 (17q21.33, -), CYGB
(17q25.1, -), CEACAMI (19q13.2, -), GABPA (21q21.3,
+) and COL6A1 (21q22.3, +); episode 3 genes selected
for sub-group study include RGS4 (1q23.3, +), RGSI
(1q31.2, +), EGRI (5q31.2, +), IER3 (6q21.33, -), CCN2
(6923.2, -), MYC (8q24.21, +), MIR4537 (14q32.3, -),
INSL3 (19q13.11, -), JUND (19q13.11, -), SOXI8
(20q13.33, -) and EMD (Xq28, +); the episode 4 genes
selected for sub-group study include LMNB2 (19q13.3,
-) and PRKCH (14q32.2, +); and the episode 6 gene(s)
selected for sub-group study include NFE2L2 (2q31.2, -).

The esebssiwaagoT-based uppasebs, dppasebs, uppmsebs,
and dppasebs and the correlate upstream part anisotropic
sub-episode block sum split integrated weighted average
(uppasebssiwa), downstream part anisotropic sub-episode
block sum split integrated weighted average (dppasebssiwa),
the upstream part mesotropic sub-episode block sum split
integrated weighted average (uppmsebssiwa), and the down-
stream part anisotropic sub-episode block sum split inte-
grated weighted average (dppasebssiwa) were determined.
The y-intercept exponential function for each sub-group
analysis gene locus sub-episode block sum (sebs; up-
stream part, upp; downstream part, dpp) and sub-epi-
sode block sum split integrated weighted average
(sebssiwa; upstream, downstream) was plotted (xy, y1;
X9, ¥2) for determination of the normalized uppasebs,
uppmsebs::uppasebssiwa, uppmsebssiwa effect; the x-
intercept plot was utilized for determination of the
normalized dppasebs, dppmsebs::dppasebssiwa, dppmsebs-
siwa effect when the uppasebs and uppmsebs sums part-
effect was equivalent; and a hybrid intercept plot was
utilized in case of equivalent magnitude ratio uppasebs :
dppasebs and uppmsebs : dppmsebs sums part-effects.
Each function is represented in form, b-e™*, where b
represents the downstream anisotropic effect. The y- or x-
sebs intercept to sebssiwa intercept quotient for
linearization was determined in form, bgeps/bsepssiwa: Lhe
sub-episode block sum (sebs) - sub-episode block sum
split integrated weighted average (sebssiwa) was deter-
mined as the normalized subtractive residual for each
function, adjusted residual.

3-tier pairwise statistical comparison of b,eps/bsepssiwa
linearization quotients and sebs - sebssiwa residuals by
esebssiwaagoTq stratum

Sub-group analysis genes were stratified by P.g interval
in £ 0.200, > 0.200 < 0.300 and > 0.300 tiers for pairwise
comparisons of the bDgeps/Dsepssiwa iNtercept linearization
quotient and subtractive residual determinations of
uppasebs, dppasebs, uppmsebs, dppmsebs and correlate
uppasebssiwa, dppasebssiwa, uppmsebssiwa, dppmsebssi-
waa as independent sums and averages for genes with
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non-nil residual normalizing adjustments. Two-step
Tukey range t-test was performed for inter-group com-
parisons of bgeps/Dgenssiwa quotients and sebs — sebssiwa
normalized residuals between tier 1 (Pyg < 0.200; 1 = 11)
and tier 2 (P > 0.200 < 0.300; n = 6), between tier 1
and tier 3 (P > 0.300; n = 8), and between tier 3 and
tier 2 (a = 0.05); likewise comparisons were performed
for determination of differences in X intergene tropy
between the tiers (a = 0.05).

Determination of the effective pressure unit quotient to
angle conversion factor gene anglemetry from the z, y-
vertical to z, x-horizontal plane

The pressure unit to angle conversion factor was deter-
mined in reference to the z, x-axis horizontal plane and
two-dimensional gene anglemetry analysis was per-
formed for the sub-group analysis genes (n = 28; n = 14).
The ©, = (1E + 02) {0.90 — [(0.000 + a > x < 0.245)
(1.208)] form was applied for anisotropic gene anglemetry,
where a is the minimum pressure for anisotropic gene
expression, and the ©y = (1E + 02) {0.90 — [1.208
(0245 = x < m)] form was applied for mesotropic
gene anglemetry, where m is the maximum pressure
for mesotropic gene expression (1 = 224), based on
linear regression of the esebssiwaagoTqs of the gene
set of the study (R* = 1). Gene position arc distance
in the z, y-vertical plane in reference to the z, x-hori-
zontal plane was defined for anisotropic and mesotro-
pic genes based on gene anglemetry thetas, ©, and
Oy The hypotenusal intergene tropy base distance
for anisotropic genes was then defined as d, for an-
isotropic genes, and as dy; for mesotropic genes, in
which case d is the final sub-episode block sum of
intergene tropy base distance for anisotropic genes
(ASEB) or for mesotropic genes (MESEB). The X
intergene base tropy distance is defined in reference
to the horizontal line of unity (Hp) as either dj-sin
©, for anisotropic genes and as dy;sin @y for meso-
tropic genes, wherein the arc gene tropy intergene
base distance is definable as dy;sin ®p; in reference
to the line of unity; and wherein the ¥ hypotenusal
gene intergene tropy distance d, (or dy) is defined as
a non-component scalar at Hy = 0° in which case da
(or M)*COS () A (or M) T X A (or M)

Vectormetry for z, x-plane horizontal alignment of
anisotropic and mesotropic genes

Vectormetry for horizontal alignment of anisotropic and
mesotropic genes was performed empirically for aniso-
tropic and mesotropic genes based on the z, y-vertical
plane position angle, ©4 for anisotropic genes and Oy
for mesotropic genes, and effective cell pressure (Peg)
for horizontal alignment, Py (0.000 + a > x < 0.245) for
anisotropic and Py (0245 > x < 0.745 - m) for
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mesotropic. Defined knowns were applied for vectorme-
try, where momental vector, m, is a product of the mass
of DNA-associated nuclear proteins (m) and the velocity
of gene tropy to horizontal (v). The origination momen-
tum vector for chromatin-associated protein viscosity at
intergene segment effect was then defined as #, tropys
the initial origination momentum vector for nuclear
membrane nucleoplasm chromatin-associated protein
viscosity at intergene segment effect was then defined as
Mich nmn tropys aNd the origination gravitational momen-
tum vector was then defined as #pograv ch tropy- The
effective momentum, my.g for z «x-horizontal plane
alignment of anisotropic gene tropy was then defined,
LN (mch tropy ~ mpro»grav ch tropy); and the effective
momentum for z, x-horizontal plane alignment of meso-
tropic gene tropy was then defined, my [m oh wopy +
My nmn tropy (' mpro»grav ch tropy)]' The relatiOHShip
between effective pressure (P.g) and momentum (#.g)
was definable for anisotropic gene horizontal alignment
(m,) and mesotropic gene horizontal alignment (m1yy).

Determination of the heterochromatinization parameters
for neural axis cell differentiation genes

Genes selected for sub-group analysis include episode
2 (n = 5), episode 3 (n = 5) and episode 4, 5 or 6 (n = 4),
n = 14. Episode 2 genes selected for sub-group study
include (ch, strand) UNCI3A (19p13.11, -), RGS2I
(1g31.2, +), SOX1 (13q34, +), DRD2 (11q23.2, -), GRINI
(9q34.3, +); episode 3 genes selected for sub-group study
include NGB (14q24.3, -), RGS2 (1q31.2, +), RGSI6
(1q23.3, -), SOX14 (3q22.3, +), DRDI (5q35.2, +) and
EGRI (5@31.2, +); the Episode 4 genes selected for sub-
group study include RGSI8 (1q31.2, +) and DRD3
(3q13.31, -); and the Episode 5 to 6 genes selected for
sub-group study include RBFOX3 (17q25.3, -) and
SHANK?2 (11q13.3-q13.4, -).

The uppasebs, dppasebs, uppmsebs, dppasebs, uppa-
sebssiwa, dppasebssiwa, uppmsebssiwa and dppasebssiwa
were determined as per the esebssiwaagoTq method and
its adjusted residual (x1, y1; x5, ¥2). The exponential func-
tion pair was y-intercept or reverse x-intercept plotted
for determination of the sebs-to-sebssiwa intercept
linearization quotient (Dseps/Dsebssiwa). Lhe uppesebssi-
waaldppesebssiwaa quotient effective intracellular pres-
sure (P.s) was then determined for classifying of
predicted gene overexpression of the genes selected for
neural axis cell differentiation. Two-dimensional gene
anglemetry analysis was performed for the mesotropic and
anisotropic gene set by effective pressure for gene expres-
sion for determination of gene position in the z, y-vertical
plane position angle (O, Oy1). The tropy of the intergene
base segments and interposed gene segment bases was de-
termined as the hypotenusal ¥ gene intergene base segment
tropy for z, y-plane to z, x-horizontal plane alignment.
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Results

Sequentially located forward strand native genes in 5’ —
3’ chronology on ch 122 in reference to LMNA by P
esebssiwaagoTq units

DAP3 is a 2 A 5 initial and final SEB gene locus with a
intergene base segment tropy of 3.09108E + 05 bases at
position -12. Sequential integration (f) to the final esebs-
siwaagoTq for DAP3 is 0.093, 0.157, 0.210, 0.247. The
final uppesebssiwaa and dppesebssiwaa for DAP3 are
1.1196E + 04 and 4.7835E + 04 intergene bases. The P
for gene locus DAP3 is 0.234 esebssiwaagoTq units.

MSTO2P is a 3 M 7 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 5.94486E + 05
bases at position -11. Sequential integration ([) to the final
esebssiwaagoTq for MSTO2P is 0.680, 0417, 0.358, 0.340,
0.309, 0.269 (DfC). The final uppesebssiwaa and dppesebs-
siwaa for MSTO2P are 1.8354E + 04 and 6.7448E + 04
intergene bases. The P.g for gene locus MSTO2P is 0.272
esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).

PIR32612 is a 3 A 7 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 5.26775E + 05
intergene bases at position -10. Sequential integration (J) to
the final esebssiwaagoTq for PIR32612 is 0.0002, 0.242,
0.261, 0.247, 0.279, 0.248. The final uppesebssiwaa and
dppesebssiwaa for PIR32612 are 1.3367E + 04 and 5.8380E
+ 04 intergene bases. The Py for gene locus PIR32612 is
0.229 esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).

LOCI100132108 is a 3 A 7 initial and final SEB gene
locus with a ¥ intergene base segment tropy of 5.82948E
+ 05 intergene bases at position -9. Sequential integra-
tion () to the final esebssiwaagoTq for LOC100132108
is 0.262, 0.357, 0.258, 0.198, 0.225, 0.205. The final uppe-
sebssiwaa and dppesebssiwaa for LOCI00132108 are
1.4504E + 04 and 6.8778E + 04 intergene bases. The P
for gene locus LOC100132108 is 0.211 esebssiwaagoTq
units (Table 1; Figs. 1, 2 and 3).

SYTI1 is a 2 A 5 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 4.15371E + 05 inter-
gene bases at position -8. Sequential integration (J) to
the final esebssiwaagoTq for SYTI11 is 0.166, 0.401,
0.333, 0.266. The final uppesebssiwaa and dppesebssiwaa
for SYT11 are 1.8089E + 04 and 6.7250E + 04 intergene
bases. The P for gene locus SYT11 is 0.269 esebssiwaa-
goTq units (Table 1; Figs. 1, 2 and 3).

GC01P1558%6 is a 3 A 7 (+1) ACM final SEB gene
locus with a X intergene base segment tropy of
1.201927E + 06 intergene bases at position -7. Se-
quential integration (f) to the final esebssiwaagoTq
for GCO1P155896 is 0.188, 0.330, 0.205, 0.198, 0.144,
0.138, 0.131. The final uppesebssiwaa and dppesebssi-
waa for GCO1P155896 are 1.8900E + 04 and
1.31341E + 05 intergene bases. The P.y for gene
locus GCO01P155896 is 0.144 esebssiwaagoTq units
(Table 1; Figs. 1, 2 and 3).
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Fig. 1 Angulation of intergene base arc distance tropy in reference
to the z, x-axis horizontal plane for amorphous heterochromatin
loop segment genes. Amorphous heterochromatin strand loop
micro-structural segmentation is a series of intergene base distance-
separated alternating anisotropic (a) and mesotropic genes (m) in
the form of one or two in-tandem anisotropic or mesotropic genes
of the same at angulation (©a, Oy) in the z, y-vertical axis plane. The
prelamin-A/C gene (Pef, 0.184)-containing amorphous form
heterochromatin strand loop segment for example is arranged as
LMNA (O = 67.8%-SEMA4A (Op = 73.7%)-SLC25A44 (O = 42.3%)-PMFI-
BGLAP (On = 724°)-TMEM79 (On = 64.4°)-TSACC (O = 49.4°)-RHBG
(O = 55.3% in series from 5' to 3’ on human ch 1922 at positions
+1 through +6 in reference to LMNA. As shown is an anisotropic
gene within its hypotenusal gene intergene base distance tropy
positioned at angulation, G, < 82.3% in the z, y-vertical plane with ¥
gene + intergene base distance, da- sin O, juxtaposed to a
mesotropic gene within its hypotenusal gene intergene base
distance tropy positioned at angulation, Gy = 11.7% from the
horizontal line of unity in a heterochromatin strand amorphous form
loop segment. A transcribable gene can be either an anisotropic
segment loop gene (B,) or a mesotropic gene segment loop gene
(©w) in an amorphous segment loop of alternating in-tandem
genes. Legend. da, hypotenusal distance of anisotropic gene
intergene tropy bases; dy, hypotenusal distance of mesotropic gene
intergene tropy bases. Note: 3', downstream

Inc-RXFP4-5 is a 3 M 7 (-2) NCA final SEB gene locus
with a ¥ intergene base segment tropy of 5.72477E + 05
intergene bases at position -6. Sequential integration
(/) to the final esebssiwaagoTq for Inc-RXFP4-5 is
0.335, 0.274, 0.292, 0.233, 0.314 (DfC), 0.272, 0.250.
The final uppesebssiwaa and dppesebssiwaa for Inc-
RXFP4-5 are 2.6779E + 04 and 8.5304E + 04 inter-
gene bases. The P,y for gene locus [nc-RXFP4-5 is
0.314 esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).
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RXFP4 is a 3 A 7 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 4.25027E + 05 inter-
gene bases at position -5. Sequential integration (J) to
the final esebssiwaagoTq, for RXFP4 is 0.144, 0.453,
0.451, 0.376, 0.299, 0.260. The final uppesebssiwaa and
dppesebssiwaa for RXFP4 are 1.2920E + 04 and 4.8207E
+ 04 intergene bases. The P.y for gene locus RXFP4 is
0.268 esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).

Inc-RXFP4-2 is a 3 M 7 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 1.210734E +
06 intergene bases at position -4. Sequential integration
(/) to the final esebssiwaagoTq for Inc-RXFP4-2 is 0.551,
0.184, 0.225, 0.208, 0.199, 0.162. The final uppesebssiwaa
and dppesebssiwaa for Inc-RXFP4-2 are 2.7911E + 04
and 1.58180E + 05 intergene bases. The P.y for gene
locus lnc-RXFP4 is 0.176 esebssiwaagoTq units (Table 1;
Figs. 1, 2 and 3).

ENSG00000224276 | LOCI105371729 is a 2 M 5 initial
and final SEB gene locus with a ¥ intergene base segment
tropy of 3.67426E + 05 intergene bases at position -3.
Sequential integration (f) to the final esebssiwaagoTq for
ENSG00000224276 | LOC105371729 is 0.527, 0.209, 0.211,
0.236, 0.260 (DfC), 0.247. The final uppesebssiwaa and
dppesebssiwaa for ENSG00000224276 / LOC105371729 are
1.4498E + 04 and 5.5694E + 04 intergene bases. The P for
gene locus ENSG00000224276/LOCI105371729 is 0.260
esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).

GC01P156042 (LAMTOR?2) is a 2 M 5 (-2) ACM final
SEB gene locus with a X intergene base segment tropy of
2.91985E + 05 intergene bases at position -2. Sequential
integration (J) to the final esebssiwaagoTq for
GC01P156042 (LAMTOR?2) is 0.358, 0.278, 0.259 (DfC),
0.273. The final uppesebssiwaa and dppesebssiwaa for
GC01P156042 (LAMTOR?2) are 1.3666E + 04 and
5.2795E + 04 intergene bases. The P for gene locus
GCO0IP156042 (LAMTOR?2) is 0.259 esebssiwaagoTq
units (Table 1; Figs. 1, 2 and 3).

RAB25 is a 3 A 7 (-2) ACM final SEB gene locus with
a ¥ intergene base segment tropy of 6.29741E + 05 inter-
gene bases at position -1. Sequential integration (J) to
the final esebssiwaagoTq for RAB25 is 0.030, 0.356,
0.297, 0.434, 0.270 (DfC), 0.242, 0.233. The final uppe-
sebssiwaa and dppesebssiwaa for RAB25 are 2.6153E +
04 and 9.7028E + 04 intergene bases. The P.y for gene
locus RAB2S5 is 0.270 esebssiwaagoTq units (Table 1;
Figs. 1, 2 and 3).

LMNA is a 2 A 5 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 9.51609E + 05 inter-
gene bases at position 0. Sequential integration (f) to the
final esebssiwaagoTq for LMNA is 0.156, 0.206, 0.162,
0.240. The final uppesebssiwaa and dppesebssiwaa for
LMNA are 2.8948E + 04 and 1.57549E + 04 intergene
bases. The P for gene locus LMNA is 0.184 esebssiwaa-
goTq units (Table 1; Figs. 1, 2 and 3).
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Fig. 2 Angulation of intergene base arc distance tropy in reference to the z, x-axis horizontal plane for anisotropic heterochromatin loop
segment genes. Anisotropic heterochromatin strand loop micro-structural arrangement is a series of 2 3 intergene base distance-separated genes
perceiving the asymmetric tropy viscosity effect with nano-compliance of the same, @5 INcCRNA class gene GCOTP156524 (P, 0.199)-containing
anisotropic form heterochromatin strand loop segment for example is arranged as GCO1P156524 (O = 66°)-TTC24 (Op = 724°-NAXE (O = 67.09-
HALPN2 (O = 67.3%-BCAN (O, = 60.6°) in series from 5’ to 3' on human ch 1922 at positions +11 through +15 in reference to LMNA. As shown is
a gene of an anisotropic heterochromatin segment loop positioned at O, = 60.49° (Pu, 0.2445) in the z, y-axis plane is transcriptionally active at
Op = Oy, and ch 14g32.3 reverse strand (-) IGH_ immunoglobin heavy chain locus gene, MIR4537, positioned at the upper limit of angulation O
=823 aligns for z x-horizontal plane transcription at a Pei = 0.064 esebssivaagoTq units. Legend. 6y zero degree horizontal axis line of unity;
da, hypotenusal distance of anisotropic gene intergene tropy bases; da sin O, distance to horizontal for anisotropic gene intergene tropy

Gene, 3’

H . —n° . —
dlstance, d/-\ at HO =0 i dA‘COS @A + Xa; Pef‘fect'\ve intracellular pressure (Peff> - 'Deffect\'ve intranuclear pressure

SEMA4A is a 2 M 5 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 2.95365E + 05
intergene bases at position +1. Sequential integration (f)
to the final esebssiwaagoTq for SEMA4A is 0.449, 0.170,
0.173. The final uppesebssiwaa and dppesebssiwaa for
SEMA4A are 7.891E + 03 and 5.8332E + 04 intergene

bases. The P. for gene locus for SEMA4A is 0.135
esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).
SLC25A44 is a 2 A 5 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 3.62292E + 05
intergene bases at position +2. Sequential integration ([)
to the final esebssiwaagoTq for SLC25A44 is 0.184,

Oy = 60.4°
P =0.245

Oy (O) = 11.70 Om

P =0.648

5> Geney 3

Fig. 3 Angulation of intergene base arc distance tropy in reference to the z, x-axis horizontal plane mesotropic heterochromatin loop segment
genes. Mesotropic heterochromatin strand loop micro-structural arrangement is a series of = 3 intergene base distance-separated genes
perceiving the lesser grade asymmetric tropy viscosity effect with nano-compliance of the same, Oy RNA/ncRNA class gene locus
ENSG00000224276 / LOC105371729 (Peg, 0.260)-containing mesotropic form heterochromatin strand loop segment consisting of three genes in-
series is arranged as ENSG00000224276 / LOC105371729 (O, = 58A60)—GC07P756042 (LAMTOR2) (B = 58,70)—RA825 Op = 5740) from 5" to 3’ on the
forward (+) strand of human ch 1g22 at positions -3 through -1 in reference to LMNA; and the heavy chain immunoglobin gene locus (IGH_)
containing mesotropic form heterochromatin strand loop segment consisting of 8 diversity genes in-series is arranged as IGHD1-20 (nf) (O =
419-IGHD6-19 (O = 52.7°)-IGHDS5-18 (On = 59.3°)-IGHD4-17 (Op = 52.5°)-IGHD3-16 (O = 52.8°)-IGHD2-15 (Oyy = 54.5°)-IGHD1-14 Oy = 54.7°)-
IGHD6-13 (G = 554°% from 3’ to 5’ on the reverse () strand of human ch 149323 in native configuration. As shown is a gene of a mesotropic
heterochromatin segment loop positioned at the lower limit of angulation Gy, = 11.7° in the z, y-vertical plane that horizontally aligns for
transcription in z, x-axis at a Pe of 0.648 esebssiwaagoTq units. Legend. O, zero degree horizontal; dy, hypotenusal distance of anisotropic gene
intergene tropy bases; dy sin Oy, distance to horizontal for anisotropic gene intergene tropy distance; dy, at Hy = 0% dcos Op + X Pefrective

intracellular pressure (Pe ) = 'Def‘fe(t'\ve intranuclear pressure
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0.226, 0.268, 0.399, 0.395 (DfC), 0.378, 0.270. The final
uppesebssiwaa and dppesebssiwaa for SLC25A44 are
2.1658E + 04 and 5.4827E + 04 intergene bases. The Peg
for gene locus for SLC25A44 is 0.395 esebssiwaagoTq
units (Table 1; Figs. 1, 2 and 3).

PMFI-BGLAP is a 2 A 5 initial and final SEB gene
locus with a ¥ intergene base segment tropy of 3.92203E
+ 05 intergene bases at position +3. Sequential integra-
tion (J) to the final esebssiwaagoTq for PMF1-BGLAP is
0.005, 0.230, 0.161, 0.133. The final uppesebssiwaa and
dppesebssiwaa for PMFI-BGLAP are 9.594E + 03 and
6.5791E + 04 intergene bases. The P for gene locus for
PMFI-BGLAP is 0.146 esebssiwaagoTq units (Table 1;
Figs. 1, 2 and 3).

TMEM?79 is a 3 A 7 (+1) ACM final SEB gene locus
with a ¥ intergene base segment tropy of 1.848556E + 06
intergene bases at position +4. Sequential integration (f)
to the final esebssiwaagoTq for TMEM?79 is 0.335, 0167,
0.208, 0.194, 0.247, 0.245, 0.228. The final uppesebssiwaa
and dppesebssiwaa for TMEM?79 are 4.0434E + 04
and 1.90636E + 05 intergene bases. The Py for gene
locus for TMEM?79 is 0.212 esebssiwaagoTq units
(Table 1; Figs. 1, 2 and 3).

TSACC is a 3 A 7 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 7.43872E + 05 inter-
gene bases at position +5. Sequential integration (f) to
the final esebssiwaagoTq for TSACC is 0.028, 0.250,
0.327, 0.340, 0.364, 0.318. The final uppesebssiwaa and
dppesebssiwaa for TSACC are 2.7118E + 04 and 8.0818E
+ 04 intergene bases. The P.g for gene locus for TSACC
is 0.336 esebssiwaagoT units (Table 1; Figs. 1, 2 and 3).

RHBG is a 2 M 5 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 6.05950E + 05
intergene bases at position +6. Sequential integration (f)
to the final esebssiwaagoT, for RHBG is 0.419, 0.280,
0.315, 0.302. The final uppesebssiwaa and dppesebssiwaa
for RHBG are 2.6125E + 04 and 9.1097E + 04 intergene
bases. The P.g for gene locus for RHBG is 0.287 esebssi-
waagoTq units (Table 1; Figs. 1, 2 and 3).

ENSG00000237390 is a 3 A 7 initial and final SEB
gene locus with a X intergene base segment tropy of
9.58633E + 05 intergene bases at position +7. Sequential
integration (/) to the final esebssiwaagoTq for
ENSG00000237390 is 0.020, 0.110, 0.164, 0.154, 0.137,
0.144. The final uppesebssiwaa and dppesebssiwaa for
ENSG00000237390 are 1.7374E + 04 and 1.13726E + 05
intergene bases. The Py for gene locus for
ENSG00000237390 is 0153 esebssiwaagoTq units (Table 1;
Figs. 1, 2 and 3).

Inc-TTC24-5 is a 3 M 7 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 9.02656E + 05
intergene bases at position +8. Sequential integration (f)
to the final esebssiwaagoTq for Inc-TTC24-5 is 0.369,
0.321, 0.355, 0.242, 0.267, 0.290. The final uppesebssiwaa
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and dppesebssiwaa for Ilnc-TTC24-5 are 4.1211E + 04
and 9.6908E + 04 intergene bases. The Py for gene
locus for Inc-TTC24-5 is 0.283 esebssiwaagoTq units
(Table 1; Figs. 1, 2 and 3).

Inc-TTC24-4 is a 3 A 7 (+1) ACM final SEB gene locus
with a ¥ intergene base segment tropy of 1.138955E +
05 intergene bases at position +9. Sequential integration
() to the final esebssiwaagoTq for Inc-TTC24-4 is 0.055,
0.276, 0.152, 0.193, 0.223, 0.235, 0.194. The final uppe-
sebssiwaa and dppesebssiwaa for Inc-TTC24-4 are
2.3007E + 04 and 1.19362E + 05 intergene bases. The
P for gene locus for lnc-TTC24-4 is 0.193 esebssiwaa-
goTq units (Table 1; Figs. 1, 2 and 3).

Inc-TTC24-1 is a 3 M 7 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 4.86984E + 05
intergene bases at position +10. Sequential integration
(/) to the final esebssiwaagoTq for Inc-TTC24-1 is 0.544,
0.097, 0.267, 0.342, 0.312, 0.264. The final uppesebssiwaa
and dppesebssiwaa for Inc-TTC24-1 are 1.4861E + 04
and 5.5298E + 04 intergene bases. The Py for gene
locus for Inc-TTC24-1 is 0.269 esebssiwaagoTq units
(Table 1; Figs. 1, 2 and 3).

GC01P156524 is a 3 A 7 (+2) ACM final SEB gene
locus with a X intergene base segment tropy of
1.492171E + 06 intergene bases at position +11. Sequen-
tial integration (J) to the final esebssiwaagoTq for
GC01P156524 is 0.141, 0.225, 0.162, 0.212, 0.223, 0.217,
0.232, 0.217, 0.199 (DfC), 0.196, 0.205. The final uppe-
sebssiwaa and dppesebssiwaa for GCO1P156524 are
2.6686E + 04 and 1.34141E + 05 intergene bases. The
P for gene locus for GCO1P156524 is 0.199 esebssiwaa-
goTq units (Table 1; Figs. 1, 2 and 3).

TTC24 is a 3 M 7 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 8.54954E + 05 inter-
gene bases at position +12. Sequential integration () to
the final esebssiwaagoTq for TTC24 is 0.406, 0.197, 0.184,
0.116, 0.145, 0.159. The final uppesebssiwaa and dppesebs-
siwaa for TTC24 are 1.6633E + 04 and 1.14108E + 05
intergene bases. The P.g for gene locus for TTC24 is 0.146
esebssiwaagoTq units (Table 1; Figs. 1, 2 and 3).

NAXE is a 3 M 7 initial and final SEB gene locus with
a X intergene base segment tropy of 1.422774E + 06
intergene bases at position +13. Sequential integration
(/) to the final esebssiwaagoTq for NAXE is 0.125, 0.218,
0.153, 0.144, 0.159, 0.187. The final uppesebssiwaa and
dppesebssiwaa for NAXE are 2.7892E + 04 and 1.61601E
+ 05 intergene bases. The Py for gene locus for NAXE
is 0.190 esebssiwaagoT units (Table 1; Figs. 1, 2 and 3).

HAPLNZ2 is a 3 M 7 initial and final SEB gene locus
with a ¥ intergene base segment tropy of 7.92243E + 05
intergene bases at position +14. Sequential integration
(/) to the final esebssiwaagoTq for HAPLN2 is 0.636,
0.505, 0.456, 0.243, 0.209, 0.211, 0.188 (DfC), 0.209,
0.194. The final uppesebssiwaa and dppesebssiwaa for
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HAPLN?2 are 1.8695E + 04 and 9.9190E + 04 intergene
bases. The P for gene locus for HAPLN?2 is 0.188 esebs-
siwaagoTq units (Table 1; Figs. 1, 2 and 3).

BCAN is a 2 M 5 initial and final SEB gene locus with
a ¥ intergene base segment tropy of 7.28923E + 05 inter-
gene bases at position +15. Sequential integration () to
the final esebssiwaagoTq for BCAN is 0.389, 0.212,
0.235, 0.262. The final uppesebssiwaa and dppesebssiwaa
for BCAN are 2.7104E + 04 and 1.11335E + 05 intergene
bases. The Py for gene locus for BCAN is 0.243 esebssi-
waagoTq units (Table 1; Figs. 1, 2 and 3).

Anisotropic gene intergene tropy sub-episode block sum
for linear two-dimensional z, y-plane anglemetry

The uppasebs, dppasebs, uppmsebs and dppasebs for an-
isotropic gene locus MIR4537 are 7.232E + 03, 1.72400E
+ 05, 5.896E + 03 and 1.1694E + 04. The uppasebssiwa,
dppasebssiwa, uppmsebssiwa and dppasebssiwa for an-
isotropic gene locus MIR4537 are 2.411E + 03, 5.7467E
+ 04, 1.474E + 03 and 2.934E + 03. The sebs and sebs-
siwa exponential function pair for anisotropic gene locus
MIR4537 is 5.799E+03 €*"°> and 1.424E+03 e'7>""0,
The bgeps/Dsenssiwa linearization quotient for anisotropic
gene locus MIR4537 is 4.07. The sebs - sebssiwa residual
for anisotropic gene locus MIR4537 is 4,821, 114,933, 4,
422 and 8,770. The uppesebssiwaa and dppesebssiwaa
for anisotropic gene MIR4537 are 1.942E + 03 and
3.0195E + 04. The esebssiwaagoTq for anisotropic gene
locus MIR4537 is 0.064. Anisotropic gene locus
MIR4537 is positioned at angle ©, = 82.2° in the z, y-
axis vertical plane.

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus COL2AI are 9.2758E + 04,
1.390995E + 06, 6.4607E + 04 and 1.46229E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus COL2A1 are 3.0919E
+ 04, 4.63665E + 05, 3.2304E + 04 and 7.3115E + 04.
The sebs and sebssiwa exponential function pair for
anisotropic gene locus COL2AI is 6.1920E + 04 &**°7
and 2.8989E+04 250 The byue/bsehesiwa linearization
quotient for anisotropic gene locus COL2A1 is 2.14. The
sebs - sebssiwa residual for anisotropic gene locus
COL2A1 is 61,839, 927,330, 32,304 and 73,115. The
uppesebssiwaa and dppesebssiwaa for anisotropic gene
locus COL2A1 are 3.1611E + 04 and 2.68390E + 05. The
esebssiwaagoTq for anisotropic gene locus COL2A1 is
0.118. Anisotropic gene locus COL2A1I is positioned at
angle A = 75.8% in the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus RGS4 are 8.1560E + 04,
1.196076E + 06, 1.01032E + 05 and 1.85608E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus RGS4 are 2.7187E +
04, 3.98692E + 05, 2.5258E + 04 and 4.6402E + 04. The
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sebs and sebssiwa exponential function pair for aniso-
tropic gene locus RGS4 is 7.8415E+04 €**°7* and
2.5014E+04 €*®°%. The byeps/bsebssiwa  linearization
quotient for anisotropic gene locus RGS4 is 3.14. The
sebs - sebssiwa residual for anisotropic gene locus RGS4
is 54,373, 797,384, 75,774 and 139,206. The uppesebssi-
waa and dppesebssiwaa for anisotropic gene locus RGS4
are 2.6223E + 04 and 2.22547E + 05. The esebssiwaa-
goTq for anisotropic gene locus RGS4 is 0.118. Aniso-
tropic gene locus RGS4 is positioned at angle ©, = 75.8°
in the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus MYC are 8.8269E + 04,
1.042981E + 06, 8.5825E + 04 and 2.27872E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus MYC are 2.9423E +
04, 3.47660E + 05, 4.2913E + 04 and 1.13936E + 05. The
sebs and sebssiwa exponential function pair for aniso-
tropic gene locus MYC is 8.8964E+04 ¢**°** and
2.4479E+04 5%, The byeps/bsenssiwa linearization quo-
tient for anisotropic gene locus MYC is 3.63. The sebs -
sebssiwa residual for anisotropic gene locus MYC is 58,
846, 695,321, 42,913 and 113,936. The uppesebssiwaa
and dppesebssiwaa for anisotropic gene locus MYC are
3.6168E + 04 and 2.30798E + 05. The esebssiwaagoTq
for anisotropic gene locus MYC is 0.157. Anisotropic
gene locus MYC is positioned at angle ©, = 71.0° in the
z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus LMNA are 4.3403E + 04, 5.73397E
+ 05, 8.6878E + 04 and 2.47931E + 05. The uppasebssiwa,
dppasebssiwa, uppmsebssiwa and dppasebssiwa for aniso-
tropic gene locus LMNA are 1.4468E + 04, 1.91132E + 05,
4.3439E + 04 and 1.23966E + 05. The sebs and sebssiwa
exponential function pair for anisotropic gene locus
LMNA is 6.65237E+05 ¢**°™ and 1.92333E+05 %%,
The Dgeps/Psepssiwa linearization quotient for anisotropic
gene locus LMNA is 3.46. The sebs - sebssiwa residual for
anisotropic gene locus LMNA is 28,935, 382,265, 43,439
and 123,966. The uppesebssiwaa and dppesebssiwaa for
anisotropic gene locus LMNA are 2.8995E + 04 and
1.57549E + 05. The esebssiwaagoTq for anisotropic gene
locus LMNA is 0.184. Anisotropic gene locus LMNA is
positioned at angle ©, = 67.8° in the z y-axis vertical
plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus CCN2 are 1.21423E + 05,
1.117098E + 06, 1.21173E + 05 and 3.42644E + 05.
The uppasebssiwa, dppasebssiwa, uppmsebssiwa and
dppasebssiwa for anisotropic gene locus CCN2 are
3.0356E + 04, 2.79275E + 05, 3.0293E + 04 and
8.5661E + 04. The sebs and sebssiwa exponential
function pair for anisotropic gene locus CCN2 is
1.21063E+05 €**° and 3.0266E+04 e The
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Dsebs/Dsebssiwa  linearization quotient for anisotropic
gene locus CCN2 is 4.00. The sebs - sebssiwa residual
for anisotropic gene locus CCN2 is 91,067, 837,824,
90,880 and 256,983. The uppesebssiwaa and dppesebs-
siwaa for anisotropic gene locus CCN2 are 3.0325E +
04 and 1.82468E + 05. The esebssiwaagoTq for aniso-
tropic gene locus CCN2 is 0.166. Anisotropic gene
locus CNN2 is positioned at angle ©, = 70.0° in the
z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus ESRRB are 9.6129E + 04,
8.08599E + 05, 4.4321E + 04 and 9.0006E + 04. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus ESRRB are 3.2043E +
04, 2.69533E + 05, 2.2161E + 04 and 4.5003E + 04. The
sebs and sebssiwa exponential function pair for aniso-
tropic gene locus ESRRB is 1.05918E+04 e'*°* and
3.4501E+04 €*5°%*, The byeps/bsepssiwa linearization quo-
tient for anisotropic gene locus ESRRB is 3.07. The sebs
- sebssiwa residual for anisotropic gene locus ESRRB is
64,086, 539,533, 22,161 and 45,003. The uppesebssiwaa
and dppesebssiwaa for anisotropic gene locus ESRRB are
2.7102E + 04 and 1.57268E + 05. The esebssiwaagoTq
for anisotropic gene locus ESRRB is 0.172. Anisotropic
gene locus ESRRB is positioned at angle O, = 69.2° in
the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus LMNBI are 4.8020E + 04,
7.17938E + 05, 1.16027E + 05 and 2.71770E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus LMNBI are 1.6007E
+ 04, 2.39313E + 05, 5.8014E + 04 and 1.35885E + 05.
The sebs and sebssiwa exponential function pair for
anisotropic gene locus LMNBI is 1.0E+05 ¢**°’* and
2.96910E+05 €'5%°*, The byeps/Psenssiwa linearization quo-
tient for anisotropic gene locus LMNBI is 3.37. The sebs
- sebssiwa residual for anisotropic gene locus LMNBI is
32,013, 478,625, 58,014 and 135,885. The uppesebssiwaa
and dppesebssiwaa for anisotropic gene locus LMNBI
are 3.7010E + 04 and 1.87599E + 05. The esebssiwaa-
goTq for anisotropic gene locus LMNBI is 0.197. Aniso-
tropic gene locus LMNBI is positioned at angle O, =
66.2° in the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus EGRI are 5.4733E + 04, 5.99581E
+ 05, 1.56904E + 05 and 3.55209E + 05. The uppasebs-
siwa, dppasebssiwa, uppmsebssiwa and dppasebssiwa for
anisotropic gene locus EGRI are 1.8244E + 04, 1.99860E
+ 05, 3.9226E + 04 and 8.8802E + 04. The sebs and sebs-
siwa exponential function pair for anisotropic gene locus
EGRI is 7.93682E+05 €°*°™ and 4.04638E+05 e*"°.
The bgeps/Dsenssiwa linearization quotient for anisotropic
gene locus EGRI is 1.96. The sebs - sebssiwa residual for
anisotropic gene locus EGRI is 36,489, 399,721, 117,678
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and 266,407. The uppesebssiwaa and dppesebssiwaa for
anisotropic gene locus EGRI are 2.8735E + 04 and
1.44331E + 05. The esebssiwaagoTq for anisotropic gene
locus EGRI is 0.199. Anisotropic gene locus EGRI is
positioned at angle ©, = 66.0° in the z, y-axis vertical
plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus PRKCH are 52593E + 04,
9.42026E + 05, 1.52911E + 05 and 3.11633E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus PRKCH are 1.7531E
+ 04, 3.14009E + 05, 7.6456E + 04 and 1.55816E + 05.
The sebs and sebssiwa exponential function pair for
anisotropic gene locus PRKCH is 1.129582E+06

e®E 0% and 3.56470E+05 €T The boupe/Decbssiva
linearization quotient for anisotropic gene locus PRKCH
is 3.17. The sebs - sebssiwa residual for anisotropic gene
locus PRKCH is 35,062, 628,017, 79,455 and 155,817.
The uppesebssiwaa and dppesebssiwaa for anisotropic
gene locus PRKCH are 4.6994E + 04 and 2.34912E + 05.
The esebssiwaagoTq for anisotropic gene locus PRKCH
is 0.200. Anisotropic gene locus PRKCH is positioned at
angle O, = 65.8° in the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus LMNB2 are 2.0538E + 04,
2.16613E + 05, 3.4762E + 04 and 8.6623E + 04. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus LMNB2 are 5.135E +
03, 5.4153E + 04, 1.1587E + 04 and 2.8874E + 04. The
sebs and sebssiwa exponential function pair for aniso-
tropic gene locus LMNB2 is 4.9363E+04 €™ and
2.9359E+04 5%, The byeps/bsenssiwa linearization quo-
tient for anisotropic gene locus LMNB?2 is 1.68. The sebs
- sebssiwa residual for anisotropic gene locus LMNB?2 is
15,404, 162,460, 23,175 and 57,749. The uppesebssiwaa
and dppesebssiwaa for anisotropic gene locus LMNB2
are 8.361E + 03 and 4.1514E + 04. The esebssiwaagoTq
for anisotropic gene locus LMNB2 is 0.201. Anisotropic
gene locus LMNB2 is positioned at angle 6, = 65.7° in
the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus IER3 are 2.3964E + 04, 2.05958E
+ 05, 5.3063E + 04 and 1.26140E + 05. The uppasebs-
siwa, dppasebssiwa, uppmsebssiwa and dppasebssiwa for
anisotropic gene locus IER3 are 1.1982E + 04, 1.02979E
+ 05, 1.7688E + 04 and 4.2047E + 04. The sebs and
sebssiwa exponential function pair for anisotropic gene
locus IER3 is 6.75603E+05 €”*** and 3.08411E+05
€50 The byeps/beebssiwa linearization quotient for
anisotropic gene locus IER3 is 2.78. The sebs - sebssiwa
residual for anisotropic gene locus IER3 is 11,982, 102,
979, 35,375 and 84,093. The uppesebssiwaa and dppe-
sebssiwaa for anisotropic gene locus IER3 are 1.4835E +
04 and 7.2513E + 04. The esebssiwaagoTg for
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anisotropic gene locus JER3 is 0.205. Anisotropic gene
locus IER3 is positioned at angle ©, = 65.3° in the z, y-
axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus EMD are 1.0617E + 04, 2.59446E
+ 05, 7.9224E + 04 and 1.96068E + 05. The uppasebs-
siwa, dppasebssiwa, uppmsebssiwa and dppasebssiwa for
anisotropic gene locus EMD are 3.539E + 03, 8.6482E +
04, 3.9612E + 04 and 9.8034E + 04. The sebs and sebs-
siwa exponential function pair for anisotropic gene locus
EMD is 2.70939E+05 ¢**"° and 8.5425E+04 >*°. The
Dseps/Dsebssiwa linearization quotient for anisotropic gene
locus EMD is 3.17. The sebs - sebssiwa residual for an-
isotropic gene locus EMD is 7,078, 172,964, 39,612 and
98,034. The uppesebssiwaa and dppesebssiwaa for aniso-
tropic gene locus EMD are 2.1576E + 04 and 9.2258E +
04. The esebssiwaagoTq for anisotropic gene locus EMD
is 0.234. Anisotropic gene locus EMD is positioned at
angle ©, = 61.7° in the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus COL6AI are 1.614E + 03,
7.3320E + 04, 4.6541E + 04 and 1.31882E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus COL6AI are 8.07E +
02, 3.6660E + 04, 2.3271E + 04 and 6.5941E + 04. The
sebs and sebssiwa exponential function pair for aniso-
tropic gene locus COL6AI is 7.1790E+04 e'*° and
3.5895E+04 €%, The byeps/bsebssiwa linearization quo-
tient for anisotropic gene locus COL6AI is 2.00. The
sebs - sebssiwa residual for anisotropic gene locus
COL6A1 is 807, 36,660, 23,271 and 65,941. The uppe-
sebssiwaa and dppesebssiwaa for anisotropic gene locus
COLG6A1I are 1.2039E + 04 and 5.1301E + 04. The esebs-
siwaagoTq for anisotropic gene locus COL6AI is 0.235.
Anisotropic gene locus COL6AI is positioned at angle
O, = 61.6° in the z, y-axis vertical plane (Table 2).

The uppasebs, dppasebs, uppmsebs and dppasebs for
anisotropic gene locus COLIAI are 3.0099E + 04,
2.10767E + 05, 2.6123E + 04 and 5.0936E + 04. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for anisotropic gene locus COLIAI are
1.0033E + 04, 7.0256E + 04, 1.3062E + 04 and
2.5468E + 04. The sebs and sebssiwa exponential
function pair for anisotropic gene locus COLIAI is
4.4873E+04 """ %% and 4.8093E+04 €***. The byeps/
Dsepssiwa linearization quotient for anisotropic gene
locus COLIAI is 2.08. The sebs - sebssiwa residual
for anisotropic gene locus COLIAI is 20,066, 140,511,
13,062 and 25,468. The uppesebssiwaa and dppesebssi-
waa for anisotropic gene locus COLIAI are 1.1547E
+ 04 and 4.7862E + 04. The esebssiwaagoTq for an-
isotropic gene locus COLIAI is 0.241. Anisotropic
gene locus COLIAI is positioned at angle ©, = 69.2°
in the z, y-axis vertical plane (Table 2).
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Mesotropic gene intergene tropy sub-episode block sum
exponential functions for linear two-dimensional z, y-
plane anglemetry

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus CYGB are 3.5180E + 04, 2.22499E
+ 05, 4.6604E + 04 and 1.07321E + 05. The uppasebssiwa,
dppasebssiwa, uppmsebssiwa and dppasebssiwa for meso-
tropic gene locus CYGB are 1.7590E + 04, 1.11250E + 05,
2.3302E + 04 and 5.3661E + 04. The sebs and sebssiwa
exponential function pair for mesotropic gene locus CYGB
is 6.0565E+04 €”*°™ and 3.0282E+04 ¢**°™. The byepy/
bsebssiwa linearization quotient for mesotropic gene locus
CYGB is 2.00. The sebs - sebssiwa residual for mesotropic
gene locus CYGB is 17,590, 111,250, 23,302 and 53,661.
The uppesebssiwaa and dppesebssiwaa for mesotropic
gene locus CYGB are 2.0446E + 04 and 8.2455E + 04. The
esebssiwaago T for mesotropic gene locus CYGB is 0.248.
Mesotropic gene locus CYGB is positioned at angle Oy =
60.0° in the z, y-axis vertical plane.

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus RGSI are 1.79174E + 05,
1.237585E + 06, 3.68331E + 05 and 6.86424E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus RGSI are 8.9587E +
04, 6.18793E + 05, 1.84166E + 05 and 3.43212E + 05.
The sebs and sebssiwa exponential function pair for
mesotropic gene locus RGSI is 9.03665E+05 ¥ and
4.51832E+05 €*¥°%%, The byeps/Dyepssiwa linearization quo-
tient for mesotropic gene locus RGSI is 2.00. The sebs -
sebssiwa residual for mesotropic gene locus RGSI is 89,
587, 616,793, 184,166 and 343,212. The uppesebssiwaa
and dppesebssiwaa for mesotropic gene locus RGSI are
1.36876E + 05 and 4.81002E + 05. The esebssiwaagoTq
for mesotropic gene locus RGSI is 0.285. Mesotropic
gene locus RGSI is positioned at angle Oy = 55.6° in
the z, y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus ENPPI are 2.7027E + 04,
1.71207E + 05, 6.1750E + 04 and 1.44916E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus ENPP1 are 9.009E
+ 03, 5.7169E + 04, 3.0875E + 04 and 7.2458E + 04.
The sebs and sebssiwa exponential function pair for
mesotropic gene locus ENPPI is 1.94930E+05 9%
and 5.1723E+04 €59, The b upe/Pechssiva linearization
quotient for mesotropic gene locus ENPPI is 3.77.
The sebs - sebssiwa residual for mesotropic gene
locus ENPPI is 18,018, 114,138, 30,875 and 72,458.
The uppesebssiwaa and dppesebssiwaa for mesotropic
gene locus ENPPI are 1.9942E + 04 and 6.4814E +
04. The esebssiwaagoTq for mesotropic gene locus
ENPPI is 0.308. Mesotropic gene locus ENPPI is
positioned at angle Oy = 52.8° in the z, y-axis verti-
cal plane (Table 3).
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The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus SOX18 are 1.3165E + 04, 7.8872E
+ 04, 6.0635E + 04 and 1.23734E + 05. The uppasebs-
siwa, dppasebssiwa, uppmsebssiwa and dppasebssiwa for
mesotropic gene locus SOX18 are 1.3165E + 04, 7.8872E
+ 04, 3.0318E + 04 and 6.1867E + 04. The byeps/Psebssiwa
linearization quotient for SOX18 is not applicable. The
sebs - sebssiwa residual for mesotropic gene locus
SOX18 is nil, nil, 30,318 and 61,868. The uppesebssiwaa
and dppesebssiwaa for mesotropic gene locus SOX18 are
2.1741E + 04 and 7.0370E + 04. The esebssiwaagoT for
mesotropic gene locus SOX18 is 0.309. Mesotropic gene
locus SOXI8 is positioned at angle ©y; = 52.7° in the z,
y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for meso-
tropic gene locus NUMAI are 3.1620E + 04, 2.58450E + 05,
79618E + 04 and 1.51649E + 05. The uppasebssiwa, dppa-
sebssiwa, uppmsebssiwa and dppasebssiwa for mesotropic
gene locus NUMAI are 1.0540E + 04, 8.6150E + 04, 3.9809E
+ 04 and 7.5825E + 04. The sebs and sebssiwa exponential
function pair for mesotropic gene locus NUMAI is
3.67204E+05 "% and 9.0203E+04 €. The Dyebs/Debssiva
linearization quotient for mesotropic gene locus NUMAI is
4.07. The sebs - sebssiwa residual for mesotropic gene locus
NUMALI is 21,080, 172,300, 39,809 and 75,825. The uppesebs-
siwaa and dppesebssiwaa for mesotropic gene locus NUMA1
are 2.5175E + 04 and 8.0987E + 04. The esebssiwaagoT, for
mesotropic gene locus NUMAI is 0.311. Mesotropic gene
locus NUMALI is positioned at angle Oy = 52.4° in the z y-
axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus INSL3 are 4.3684E + 04,
3.31573E + 05, 1.11297E + 05 and 1.99810E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus INSL3 are 1.0921E +
04, 8.2893E + 04, 3.7099E + 04 and 6.6603E + 04. The
sebs and sebssiwa exponential function pair for mesotro-
pic gene locus INSL3 is 4.59932E+05 €’*°% and
9.0816E+04 *¥°%*, The byeps/bsepssiwa linearization quo-
tient for mesotropic gene locus INSL3 is 5.06. The sebs -
sebssiwa residual for mesotropic gene locus INSL3 is 32,
763, 248,680; 74,198 and 133,207. The uppesebssiwaa
and dppesebssiwaa for mesotropic gene locus INSL3 are
7.4198E + 04 and 1.33207E + 05. The esebssiwaagoTq
for mesotropic gene locus INSL3 is 0.321. Mesotropic
gene locus INSL3 is positioned at angle Oy = 51.2° in
the z, y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus NFE2L2 are 5.8996E + 04,
5.78798E + 05, 5.60911E + 05 and 1.359677E + 06. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus NFE2L?2 are 9.833E +
03, 9.6466E + 04, 1.12182E + 05 and 2.71935E + 05. The
sebs and sebssiwa exponential function pair for mesotropic
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gene locus NFE2L2 is 5.23516E+05 ¢ and 8.7324E+04
e"F % The byeps/Psebssiwa linearization quotient for meso-
tropic gene locus NFE2L2 is 5.995. The sebs - sebssiwa
residual for mesotropic gene locus NFE2L2 is 49,163, 482,
332, 448,729 and 1,087,741. The uppesebssiwaa and dppe-
sebssiwaa for mesotropic gene locus NFE2L2 are 6.1007E
+ 04 and 1.84201E + 05. The esebssiwaagoTq for
mesotropic gene locus NFE2L2 is 0.331. Mesotropic
gene locus NFE2L2 is positioned at angle ©y = 50.2°
in the z, y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus JUND are, 2.2037E + 04,
1.38709E + 05, 1.69285E + 05 and 3.92203E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus JUND are 7.346E +
03, 4.6236E + 04, 4.2321E + 04 and 9.8051E + 04. The
sebs and sebssiwa exponential function pair for mesotro-
pic gene locus JUND is 1.18726E+05 e’E 0% and
3.9484E+04 5%, The byeps/Psepssiwa linearization quo-
tient for mesotropic gene locus JUND is 3.01. The sebs -
sebssiwa residual for mesotropic gene locus JUND is 14,
691, 92,423, 126,964, and 294,152. The uppesebssiwaa
and dppesebssiwaa for mesotropic gene locus JUND are
2.4833E + 04 and 7.2144E + 04. The esebssiwaagoTq for
mesotropic gene locus JUND is 0.344. Mesotropic gene
locus JUND is positioned at angle ©y = 48.4° in the z, y-
axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus PRDMI1 are 3.4053E + 04,
1.63936E + 05, 7.8539E + 04 and 1.75378E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus PRDM1 are 1.1351E
+ 04, 5.4645E + 04, 3.9270E + 04 and 8.7689E + 04. The
sebs and sebssiwa exponential function pair for mesotro-
pic gene locus PRDMI is 1.55684E+05 €*°* and
4.5086E+04 €%, The byeps/bsenssiwa linearization quo-
tient for mesotropic gene locus PRDM1 is 3.45. The sebs
- sebssiwa residual for mesotropic gene locus PRDM]1 is
2.2702E + 04, 1.09291E + 05, 3.9270E + 04 and 8.7689E
+ 04. The uppesebssiwaa and dppesebssiwaa for meso-
tropic gene locus PRDM1 are 2.5311E + 04 and 7.1167E
+ 04. The esebssiwaagoTq for mesotropic gene locus
PRDM1 is 0.356. Mesotropic gene locus PRDMI is
positioned at angle ©y; = 47.0° in the z y-axis vertical
plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus RGS13 are 19877E + 04,
2.92457E + 05, 4.41738E + 05 and 8.70097E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus RGS13 are 9.939E +
03, 1.46229E + 05, 1.47246E + 05 and 2.90032E + 05.
The sebs and sebssiwa exponential function pair for
mesotropic gene locus RGS13 is 2.77812E+05 ¢**** and

1.39157E+05 €°2 %% The byupe/boctesina  linearization
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quotient for mesotropic gene locus RGS13 is 1.996. The
sebs - sebssiwa residual for mesotropic gene locus
RGS13 is 9,939, 146,229, 294,492 and 580,065. The
uppesebssiwaa and dppesebssiwaa for mesotropic gene
locus RGS13 are 7.8592E + 04 and 2.18130E + 05. The
esebssiwaagoTq for mesotropic gene locus RGSI3 is
0.360. Mesotropic gene locus RGSI3 is positioned at
angle Oy = 46.5° in the z, y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus CEACAMI are 2.6442E + 04,
1.35371E + 05, 1.89995E + 05 and 3.95194E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus CEACAMI are 13,
221, 67,686, 63,332 and 131,731. The sebs and sebssiwa
exponential function pair for mesotropic gene locus
CEACAMI is 1.13842E+05 €*"°* and 5.6780E+04
e'F9% The byeps/beebssiwa linearization quotient for
mesotropic gene locus CEACAMI is 2.005. The sebs -
sebssiwa residual for mesotropic gene locus CEACAM1I
is 13,221, 67,686, 126,663 and 263,463. The uppesebssi-
waa and dppesebssiwaa for mesotropic gene locus CEA-
CAMI1 are 3.8276E + 04 and 9.9708E + 04. The
esebssiwaagoTq for mesotropic gene locus CEACAM] is
0.384. Mesotropic gene locus CEACAM] is positioned at
angle Oy = 43.6° in the z, y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus GABPA are 8904E + 03,
4.9560E + 04, 4.63859E + 05 and 8.76791E + 05. The
uppasebssiwa, dppasebssiwa, uppmsebssiwa and dppa-
sebssiwa for mesotropic gene locus GABPA are
8.904E + 03, 4.9560E + 04, 2.31930E + 05 and
4.38396E + 05. The bgeps/Dgepssiwa linearization quo-
tient for GABPA is not applicable. The sebs - sebs-
siwa residual for mesotropic gene locus GABPA is nil,
nil, 231,930 and 438,396. The uppesebssiwaa and
dppesebssiwaa for mesotropic gene locus GABPA are
1.20417E + 05 and 2.43978E + 05. The esebssiwaa-
goTo for mesotropic gene locus GABPA is 0.494.
Mesotropic gene locus GABPA is positioned at angle
On = 30.3% in the z y-axis vertical plane (Table 3).

The uppasebs, dppasebs, uppmsebs and dppasebs for
mesotropic gene locus CD34 are 5.03E + 02, 5.565E +
03, 1.94524E + 05 and 2.90844E + 05. The uppasebssiwa,
dppasebssiwa, uppmsebssiwa and dppasebssiwa for
mesotropic gene locus CD34 are 5.03E + 02, 5.565E +
03, 9.7262E + 04 and 1.45422E + 05. The Dgeps/bsebssiwa
linearization quotient for CD34 is not applicable. The
sebs - sebssiwa residual for mesotropic gene locus CD34
is nil, nil, 97,262 and 145,422. The uppesebssiwaa and
dppesebssiwaa for mesotropic gene locus CD34 are
4.8882E + 04 and 7.5493E + 04. The esebssiwaagoTq for
mesotropic gene locus CD34 is 0.648. Mesotropic gene
locus CD34 is positioned at angle ©y; = 11.7° in the z, y-
axis vertical plane (Table 3).
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bsebs/bsebssiwa linearization quotient and sebs - sebssiwa
residual statistical significance by effective intracellular
pressure gene esebssiwaagoTq stratum

The Dgens/bsenssiwa linearization quotient is 3.143 + 0.688 for
tier 1 (Peg < 0.200, n = 11). The X intergene tropy for tier 1
is 1.162733E+06 + 497,383 intergene bases. The Dyeps/Psehssiwa
linearization quotient is 2.240 + 0463 for tier 2 (Peg > 0.200
<0.300, = 6; p = 0.006 vs tier 1). The X intergene tropy for
tier 2 is 7.34813E+05 + 856,523 intergene bases (p = 0.103 vs
tier 1). The Dgeps/bsepssiwa linearization quotient is 3.670 +
1.393 for tier 3 (P > 0.300, # = 8, non-nil; p = 0.145 vs tier
1; p = 0.017 vs tier 2). The X intergene tropy is 9.64537E+05
+ 749,407 intergene bases for tier 3 (p = 0.248 vs tier 1; p =
0.301 vs tier 2).

The uppasebs, uppasebssiwa residual is 4.4214E+04 +
24,373 for tier 1 (Peg < 0.200, n = 11). The dppasebs,
dppasebssiwa residual is 5.47340E+05 + 258,360 for tier
1 (n = 11). The uppmsebs, uppmsebssiwa residual is
5.3053E+04 + 34,298 for tier 1 (n = 11). The dppmsebs,
dppmsebssiwa residual is 1.24074E+05 + 82,270 for tier
1(n=11).

The uppasebs, uppasebssiwa residual is 2.5470E+04 +
32,476 for tier 2 (Peg > 0.200 < 0.300, # = 6; p = 0.098 vs
tier 1). The dppasebs, dppasebssiwa residual is
1.87595E+05 + 217,367 for tier 2 (n = 6; p = 0.006 vs tier
1). The uppmsebs, uppmsebssiwa residual is 5.2179E+04
+ 65,457 for tier 2 (n = 6; p = 0.486 vs tier 1). The
dppmsebs, dppmsebssiwa residual is 1.21333E+05 + 112,
712 for tier 2 (n = 6; p = 0.477 vs tier 1).

The uppasebs, uppasebssiwa residual is 3.6877E+04 +
38,272 for tier 3 (Peg > 0.300, n = 8, non-nil; p = 0.308 vs
tier 1; p = 0.284 vs tier 2). The dppasebs, dppasebssiwa
residual is 2.03613E+05 + 129,187 for tier 3 (n = 8, non-
nil; p = 0.002 vs tier 1; p = 0.433 vs tier 2). The uppmsebs,
uppmsebssiwa residual is 1.33445E+05 + 156,526 for tier 3
(m = 8 p = 0057 vs tier 1; p = 0.129 vs tier 2). The
dppmsebs, dppmsebssiwa residual is 2.99853E+05 + 364,
084 for tier 3 (n = 8, non-nil; p = 0.068 vs tier 1; p = 0.136
vs tier 2).

Heterochromatinization parameters for differentiated
neural axis gene angulation positioning in linear 2-
dimensional z, y-vertical plane

The uppasebs, dppasebs, uppmsebs and dppasebs for
UNCI3A are 5.888E + 03, 2.8975E + 04, 1.65112E + 05,
3.50047E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for UNCI3A are
5.888E + 03, 2.8975E + 04, 8.2556E + 04 and 1.75024E +
05. The bsebs/bsebssiwa linearization quotient for UNCI13A
is not applicable. The sebs - sebssiwa residual for
UNCI3A is nil, nil, 82,556 and 175,024. The uppesebssi-
waa and dppesebssiwaa for UNC13A are 4.4222E + 04
and 1.01999E + 05. The esebssiwaagoTq for UNCI13A is
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0.434. LUINC13A is positioned at angle Om = 37.6" in the
z, y-axis vertical plane.

The uppasebs, dppasebs, uppmsebs and dppasebs for
RGS21 are 1.3087E + 04, 2.29159E + 05, 3.56158E + 05
and 5.66939E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for RGS21 are 6.544E +
03, 1.14580E + 05, 1.18719E + 05 and 1.88980E + 05.
The sebs and sebssiwa exponential function pair for
RGS21 is 1.11284E+05 ¢**°% and 2.2137E+04 %%
The bDgebs/Dsebssiwa linearization quotient for RGS21 is
5.03. The sebs - sebssiwa residual for RGS21I is 6,544,
114,580, 237,439 and 377,959. The uppesebssiwaa and
dppesebssiwaa for RGS21 are 6.2631E + 04 and
1.51780E + 05. The esebssiwaagoTq for RGS21 is 0.413.
RGS21 is positioned at angle Oy = 40.1° in the z, y-axis
vertical plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
SOX1 are 1.6642E + 04, 1.36246E + 05, 1.73795E and
4.35291E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for SOXI are 5.547E +
03, 4.5415E + 04, 4.3449E + 04 and 1.08823E + 05. The
sebs and sebssiwa exponential function pair for SOX1 is
1.20477E+05¢"°™ and 3.9963E+04 """ The byeps/
Dgepssiwa linearization quotient for SOX1I is 3.01. The sebs
- sebssiwa residual for SOXI is 11,095, 90,830, 130,346
and 326,468. The uppesebssiwaa and dppesebssiwaa for
SOX1 are 2.4498E + 04 and 7.7119E + 04. The esebssi-
waagoTq for SOX1 is 0.318. SOXI is positioned at angle
Oum = 51.6° in the z y-axis vertical plane (Table 4
Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
NGB are 1.6465E + 04, 1.68356E + 05, 4.7494E + 04 and
79764E + 04. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for NGB are 5.488E +
03, 5.6119E + 04, 2.3747E + 04 and 3.9882E + 04. The
sebs and sebssiwa exponential function pair for NGB is
2.50250E+05 €**** and 6.6186E+04 €”*°. The byeps/
Depssiwa linearization quotient for NGB is 3.78. The sebs
- sebssiwa residual for NGB is 10,977, 112,238, 23,747
and 39,882. The uppesebssiwaa and dppesebssiwaa for
NGB are 1.4618E + 04 and 4.8000E + 04. The esebssi-
waagoTq for NGB is 0.305. NGB is positioned at angle
Oum = 53.2° in the z y-axis vertical plane (Table 4
Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
SHANKI are 7.9764E + 04, 8.2330E + 04, 6.05471E +
05, 2.63439E + 05 and 5.90625E + 05. The uppasebssiwa,
dppasebssiwa, uppmsebssiwa and dppasebssiwa for
SHANKI are 1.1761E + 04, 8.6496E + 04, 4.3907E + 04
and 9.8438E + 04. The sebs and sebssiwa exponential
function pair for SHANKI is 6.12243E+05 €'5°* and
8.2498E+04 €%, The byeps/Penssiwa linearization quo-
tient for SHANKI1 is 7.42. The sebs - sebssiwa residual
for SHANK1 is 70,569, 518,975, 219,533 and 492,188.
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The wuppesebssiwaa and dppesebssiwaa for SHANKI
are 2.7834E + 04 and 9.2467E + 04. The esebssiwaa-
goTq for SHANKI is 0.301. SHANKI is positioned at
angle Oy = 53.6° in the z y-axis vertical plane (Table 4;
Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
RGS2 are 7.9267E + 04, 7.56237E + 05, 6.59244E + 05
and 1.560848E + 06. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for RGS2 are 2.6422E +
04, 2.52079E + 05, 1.64811E + 05 and 3.90212E + 05.
The sebs and sebssiwa exponential function pair for
RGS2 is 6.84931E+05 e""° and 2.31902E+05 %%
The bDgeps/Dsebssiwa  linearization quotient for RGS2 is
2.95. The sebs - sebssiwa residual for RGS2 is 52,845,
504,158, 494,433 and 1,170,636. The uppesebssiwaa and
dppesebssiwaa for RGS2 are 9.5617E + 04 and 3.21146E
+ 05. The esebssiwaagoTq for RGS2 is 0.298. RGS2 is
positioned at angle ©y = 54° in the z y-axis vertical
plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
RGS16 are 4.1927E + 04, 2.78410E + 05, 1.33362E + 05
and 6.5059E + 04. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for RGS16 are 2.0964E
+ 04, 1.39205E + 05, 4.4454E + 04 and 1.21686E + 05.
The sebs and sebssiwa exponential function pair for
RGS16 is 2.45881E+05 " and 1.56958E+05 e°*%,
The bDgeps/Psebssiwa linearization quotient for RGSI6 is
1.57. The sebs - sebssiwa residual for RGS16 is 20,964,
139,205, 88,908 and 243,373. The wuppesebssiwaa and
dppesebssiwaa for RGSI6 are 32709E + 04 and
1.30446E + 05. The esebssiwaagoTq for RGS16 is 0.251.
RGS16 is positioned at angle = 59.7° in the z, y-axis
vertical plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
DRDI are 1.27930E + 05, 1.062852E + 06, 2.79538E +
05 and 5.71499E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for DRDI are 3.1983E
+ 04, 2.65713E + 05, 6.9885E + 04 and 1.42875E + 05.
The sebs and sebssiwa exponential function pair for
DRDI is 6.93874E+05 ¢”*° and 1.73469E+05 e°**%,
The bgeps/bsebssiwa  linearization quotient for DRDI is
4.00. The sebs - sebssiwa residual for DRDI is 95,948,
797,139, 209,654 and 428,624. The uppesebssiwaa and
dppesebssiwaa for DRD1 are 5.0934E + 04 and 2.04294E
+ 05. The esebssiwaagoTq for DRDI is 0.249. DRDI is
positioned at angle ©; = 59.9° in the z y-axis vertical
plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
SOX14 are 7.6621E + 04, 1.016347E + 06, 2.04065E + 05
and 4.30144E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for SOX14 are 1.9155E
+ 04, 2.54087E + 05, 6.8022E + 04 and 1.43381E + 05.
The sebs and sebssiwa exponential function pair for
SOX14 is 1.209365E+06 *°"°™ and 3.34544E+05
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1E- . . .
T The byeps/Psenssiwa  linearization quotient for

SOX14 is 3.62. The sebs - sebssiwa residual for SOX14 is
57,466, 762,260, 136,043 and 286,763. The uppesebssi-
waa and dppesebssiwaa for SOX14 are 4.3588E + 04 and
1.98734E + 05. The esebssiwaagoTq for SOX14 is 0.219.
SOX14 is positioned at angle ©, = 63.5° in the z, y-axis
vertical plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
DRD?2 are 7.8907E + 04, 7.90658E + 05, 1.01906E + 05
and 1.85067E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for DRD2 are 2.6302E
+ 04, 2.63553E + 05, 5.0953E + 04 and 9.2533E + 04.
The sebs and sebssiwa exponential function pair for
DRD2 is 1.10192E+05 ¢**°7* and 7.2871E+04 €%
The Dgeps/Dsebssiwa linearization quotient for DRD2 is1.51.
The sebs - sebssiwa residual for DRD2 is 52,605, 527,
106, 50,953 and 92,533. The uppesebssiwaa and dppe-
sebssiwaa for DRD2 are 3.8628E + 04 and 1.78043E +
05. The esebssiwaagoTq for DRD2 is 0.217. DRD?2 is
positioned at angle ©, = 63.8° in the z, y-axis vertical
plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
RBFOX3 are 7.7745E + 04, 7.99501E + 05, 2.15712E + 05
and 5.04325E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for RBFOX3 are
1.2957E + 04, 1.33250E + 05, 3.0816E + 04 and 7.2046E
+ 04. The sebs and sebssiwa exponential function pair
for RBFOX3 is 1.10192E+05 """ and 7.2871E+04
e The byeps/beebssiwa linearization quotient for
RBFOX3 is 4.80. The sebs - sebssiwa residual for
RBFOX3 is 64,787, 666,251, 184,896 and 432,278. The
uppesebssiwaa and dppesebssiwaa for RBFOX3 are
2.1887E + 04 and 1.02648E + 05. The esebssiwaagoTq
for RBFOX3 is 0.213. RBFOX3 is positioned at angle ©, =
64.3° in the z y-axis vertical plane (Table 4;
Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
RGS18 are 1.53005E + 05, 1.438692E + 06, 3.78343E +
05 and 1.008303E + 06. The uppasebssiwa, dppasebs-
siwa, uppmsebssiwa and dppasebssiwa for RGSI8 are
3.0601E + 04, 2.87738E + 05, 6.3057E + 04 and
1.68050E + 05. The sebs and sebssiwa exponential func-
tion pair for RGS18 is 2.0E+06 e**°° and 4.77757E+05
e?59%% The byeps/beebssiwa linearization quotient for
RGS18 is 4.19. The sebs - sebssiwa residual for RGS18 is
122,404, 1,150,953, 315,285 and 840,252. The uppesebssi-
waa and dppesebssiwaa for RGS18 are 4.6829E + 05 and
2.27894E + 05. The esebssiwaagoTq for RGSI8 is 0.205.
RGS18 is positioned at angle ©, = 65.2° in the z, y-axis
vertical plane (Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
GRINI are 1.7024E + 04, 1.79509E + 05, 6.2241E + 04
and 1.62947E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for GRINI are 8.512E +
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03, 8.9755E + 04, 2.0747E + 04 and 5.4316E + 04. The
sebs and sebssiwa exponential function pair for GRINI
is 1.86172E+05 €**° and 1.27295E+05 " °* The
Dsebs/Dsepssiwa linearization quotient for GRINI is 1.46.

The sebs - sebssiwa residual for GRINI is 8,512, 89,
755, 41,494 and 108,632. The uppesebssiwaa and dppe-
sebssiwaa for GRIN1 are 1.4630E + 04 and 7.2035E + 04.
The esebssiwaagoTq for GRINI is 0.203. GRINI is posi-
tioned at angle ©, = 65.5° in the z, y-axis vertical plane
(Table 4; Additional file 1: Table S1).

The uppasebs, dppasebs, uppmsebs and dppasebs for
DRD3 are 7.8218E + 04, 6.57108E + 05, 6.6128E + 04
and 1.08626E + 05. The uppasebssiwa, dppasebssiwa,
uppmsebssiwa and dppasebssiwa for DRD3 are 1.5644E
+ 04, 1.31422E + 05, 1.6532E + 04 and 2.7157E + 04.
The sebs and sebssiwa exponential function pair for
DRD3 is 6.3965E+04 ¢~ and 1.6772E+04 ¢**°*. The
Debs/Dsebssiwa linearization quotient for DRD3 is 3.81.
The sebs - sebssiwa residual for DRD3 is 62,574, 525,
686, 49,596 and 81,470. The uppesebssiwaa and dppe-
sebssiwaa for DRD3 are 1.6088E + 04 and 7.9289E + 04.
The esebssiwaagoTq for DRD3 is 0.203. DRD3 is posi-
tioned at angle ©, = 65.5° in the z y-axis vertical plane
(Table 4; Additional file 1: Table S1).

Discussion

Linear normalized determination of gene positioning
angulation in the z, y-plane by the esebssiwaagoTq
method effective intracellular pressure unit

The Dgeps/bsebssiwa SEDS  intercept-to-sebssiwa intercept
quotient and residual adjustments have been determined
in this study by x-, y- or hybrid intercept exponential
function plotting for specific detection of the predomin-
ant paired linearization effect as either the dppasebs,
dppmsebs, uppasebs, uppmsebs, or dual wuppasebs,
uppmsebs, dppasebs, dppmsebs due to normalizing pri-
mary weighted averaging. Since the Dgeps/Dsebssiwa
linearization quotient for tier 1 sub-group analysis genes
within the P.g stratum < 0.200 is 3.143 + 0.688 (n = 11),
and that for tier 3 sub-group analysis genes within the
P g stratum > 0.300 is 3.670 + 1.393 (n = 8; p = 0.145 vs
tier 1), whereas that for tier 2 sub-group analysis genes
within the Py stratum > 0.200 < 0.300 is 2.240 + 0.463
(n = 6; p = 0.006 vs tier 1); these pairwise comparisons
are consistent with primary linearization of the dppa-
sebs, dppmsebs anisotropy effect for tier 1 < 0.200 P
genes and of the uppasebs, uppamsebs mesotropy effect
for tier 3 > 0.300 P.s genes, in contrast to dual
linearization for tier 2 intermediate Pg stratum genes
due to the presence of downstream and upstream tropy
effects of equivalence. The pairwise statistical
significance of the subtractive sebs, sebssiwa residual
comparisons between tier 2 and tier 1 genes (p = 0.098,
p = 0.006, p = 0.486, p = 0.477), and between tier 3 and
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tier 1 genes (p = 0.308, p = 0.002, p = 0.057, p = 0.068)
is further consistent with the primary weighted aver-
aging linearization due to uppmsebs and dppmsebs nor-
malizing of the uppasebs and uppmsebs effects in tier 3
> 0.300 P.; genes as probability for significance ap-
proaches alpha (a = 0.05). Therefore, primary
linearization adheres to the rule of split-integrated aver-
aging to linearization of mutually exclusive upstream
(upp-) and downstream (dpp-) parts within the respect-
ive anisotropic or mesotropic gene category inclusive of
SEB interconversions; in which case, normalization of
the dppasebs, dppmsebs effect predominates in aniso-
tropic gene MYC (Dseps/bsebssiwa: 3-63), the uppasebs,
uppmsebs effect predominates in mesotropic gene
PRDM1I (Dgeps/bsepssiwa: 3-45), while both the dppasebs,
dppmsebs and uppasebs, uppmsebs effects are linear nor-
malized in PRKCH (bgeps/Psebssiwa: 3-17).

Secondary linearization of the anisotropic effect for
both types of genes is by the mesotropic effect at the
second weighted averaging stage of the uppesebssiwaa
and dppesebssiwaa; as in the example of mesotropic
gene INSL3 (Dseps/Dsebssiwa: 5:06) in which there is further
linearization of the split-integrated final anisotropic ef-
fect of 1.0921E + 04 (uppasebssiwa) and 8.2893E + 04
intergene bases (dppmsebssiwa) by the mesotropic effect
of 3.7099E + 04 (dppasebssiwa) and 6.6603E + 04
(dppmsebssiwa), which results in an wuppasebssiwaa,
dppesebssiwaa of 2.4010E + 04 and 7.4748E + 04 (P,
0.321) for horizontal alignment from the z, y-plane
Oy = 51.2%; and as another example, anisotropic
gene CCN2 (bseps/bsebssiwa: 4-00) in which there is the
further linearization of the split-integrated final aniso-
tropic effect of 3.0356E + 04 and 2.79275E + 05 with a
mesotropic effect of 4.2913E + 04 and 1.13936E + 05
intergene bases that results in an uppasebssiwaa, dppe-
sebssiwaa of 30293E + 04 and 1.82468E + 05 (P.g 0.166)
for z, x-plane transcriptive alignment (6 = 70.0°).

Therefore, since the esebssiwaagoTq method is based
on the normalization of the anisotropy effect at two dis-
tinct stages and predicts the temporality of gene expres-
sion in linear normal effective intracellular pressure
units (Peg) at which eukaryotic heterochromatin strand
segments of DNA horizontally align for transcription
with respect to the gene it can be applied to study gene
positioning angulation in linear normal 2-D space, which
implies that the process of horizontal z, x-plane align-
ment of a gene is linear normalized in the nucleoplasm
of an eukaryotic cell.

Arrangement of genes in native positions is pressurotopic
by heterochromatin gene loop segments of differing
nano-compliance

The upstream 5’ end intergene and downstream 3’ end
intergene base segments with respect a gene are subject
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Fig. 4 Vectormetry for horizontal alignment of anisotropic and
mesotropic genes by heterochromatin strand structural pressurotopy.
Anisotropic gene loci are positioned between angles 82.3 and 60.5° in
the z, y-vertical plane encounter the chromatin-associated protein
viscosity effect at intergene segments. The effective momentum (meg) in
anisotropic gene alignment to the z x-horizontal plane is ma = M, yop,
(- Myograv ch wopy) @S indicated by the left bracket. Mesotropic gene loci
are positioned between angles 604 and 11.7° in the z y-vertical plane
encounter dual chromatin-associated protein viscosity effect at intergene
segments and the nuclear membrane nucleoplasm chromatin-
associated protein viscosity effect at intergene segments. The effective
momentum (meg) in mesotropic gene alignment to the z x-horizontal
p\ane is My = Mch, tropy + My o tropy ¢ Myiograv ch tropy) as indicated
by the right bracket. The effective momentum (m.g) in gene
transcription will be inversely proportional to the effective cell pressure
(Pe) required for horizontal alignment of gene intergene loop segment
tropy, Pess (0064 2 x < 0.245) - mp = P (0.245 2 x < 0648) - my,. The
initial momentum vector for anisotropic gene alignment, Mcp, opy, Will
be greater as the origination point of anisotropic genes is 7.7 degrees (%)
from the z y-vertical, which require lesser applied pressure for horizontal
alignment; whereas, the initial momentum vector for mesotropic gene
alignment, Mcp, topy + Meh amn tropy (M), Will be lesser as the origination
point of mesotropic genes is between 296° and 783 degrees (%) to the
z, y~vertical plane, which require lesser applied pressure for horizontal
alignment. Therefore, the effective momentum (Mg, m,, my,) for gene
transcription is inversely proportional to the effective cell pressure (Pos)
required for horizontal alignment of gene intergene loop segment tropy.
Legend. Mg, yopy: left bracket; M, yopy + Mch nmn tropy: Might bracket;
Myrograv ch tropy PrO-gravitational momentum vector (not shown);

Peffectlve intracellular pressure (Pe ) = Peffect\ve intranuclear pressure

to peptide, microRNA and functional pseudogene RNA
affinity binding viscosity weighting effects in both for-
ward transcribing and reverse anti-transcribing direc-
tions that are asymmetric [25], in which case each gene
exists at angulation with reference to the z, x-axis
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(See figure on previous page.)

nucleoplasm chromatin

Fig. 5 Pressurotopic model for binomial always-on heterochromatin gene transcription by anisotropic or mesotropic DNA strand loop micro-
structural segmentation. In the binomial always-on model of gene transcription by micro-structural segmentation pressurotopy, mesotropy and
amorphousity loop form heterochromatin loop tropy strand genes positioned between 11.7 and 60.4° degrees in the z, y-vertical plane
perceiving asymmetric viscosity effects of the same align for transcription during increases of P to between 0.245 and 0.648 esebssiwvaagoTq
units within inner nuclear membrane (INM)-associated heterochromatin; whereas, anisotropy and amorphousity loop form heterochromatin loop
tropy strand genes positioned between 60.5 and 82.3° in the z, y-vertical plane perceiving lesser grade asymmetric viscosity effects of the same
align for transcription during decreases in Pegr to between 0.064 and 0.2445 esebssiwaagoTq units within peripheral nucleoplasm heterochromatin
in association with un-limiting nuclear pore subunits. Heterochromatin shifts towards the inner nuclear envelope margin following the
transcription of EMD (Pag, 0.234; 65 = 61.7° during which positive pressuromodulation at the cell membrane regulates mechanotransduction
apparatus sensitivity for linear increases in nuclear effective pressure (Pe¢) and resultant mesotropic gene transcription; whereas, heterochromatin
shifts towards the central peripheral nucleoplasm edge due to negative pressuromodulation at the cell membrane and mitochondrial oxidative
challenge-exothermy, during which transcription of inner nuclear envelope peptide-coding genes LMNBT (Pegr, 0.197; 64 = 66.2°) — LMNA (Pug,
0.184; 05 = 67.8% to LMNB2 (Pug, 0.167; B4 = 69.8°) regulates sensitivity for linear increases (or decreases) in mechanotransduction pressure
esebssiwaagoTq units. Legend. Cyan oval, complete nuclear pore complex with all subunits; light cyan oval, partial nuclear pore complex with
some subunits; dark blue triangle, lamin and lamin-associated proteins; light blue triangle, lamin and lamin-associated proteins; transparent ovals,
nucleosome with histone proteins; solid gold rectangle, anisotropic chromatin strand loop segment DNA with transcription ready infra-
pressuromodulated genes; bright green rectangle, mesotropic chromatin strand loop segment DNA with transcription ready supra-
pressuromodulated genes; solid bracket, nuclear membrane nucleoplasm chromatin; dashed bracket, central peripheral edge

horizontal plane at the line of unity (fy) as a result of
forward paired point tropy fulcrum weighting (prpTq)
with underlying baseline reverse anisotropy.

The segmentation of strand heterochromatin for posi-
tive strand (+) native configuration genes of human
1q22 located between position -12 and +15 in reference
to LMNA (pos 0) has been studied by the determina-
tions of the esebssiwaagoTy of sequentially situated
genes. As it has been determined herein, the gene loop seg-
ment structure for the LMNA gene (P 0.184; 05 =
68.4°%)-containing forward strand (+) from 5’ to 3’ has
been determined is: 5’-0.234-(a.15)-0.272 (m_;;)-0.229
(a.10)-0.211 (a9)-0.269 (m_g)-0.144 (a_;)-0.314 (m_¢)-
0.268 (m_5)-0.176 (a_4)-0.260 (m_3)-0.259 (m_5)-0.270
(m_1)-0.184 (ap)-0.135 (m,;)-0.395 (m,,)-0.146 (a,3)-
0.212 (a,4)-0.336 (m,s5)-0.287 (m,s)-0.153 (a,7)-0.283
(m,g)-0.193  (a,9)-0.269  (m,10)-0.199  (a,11)-0.146
(a;12)-0.190 (a,13)-0.188 (a,14)-0.243 (a,;15)-3, which
begins at the 5 end with DAP3 (P.y 0.234) in the
form of a 9-in series anisotropy alternating meso-
tropy amorphous loop segment (a-m-a-a-m-a-m-m-a)
followed by a 3-in series mesotropy loop segment
(m), and then a 11-in series anisotropy alternating
anisotropy amorphous loop segment (a-m-m-a-a-m-
m-a-m-a-m) with LMNA followed by a 5-in series
anisotropy loop segment (a) with 3’ end BCAN (P.g
0.234). These findings of the study are further sup-
ported by the retrospective analysis of micro-segmentation
of negative strand (-) human 14q32.3 B-cell heavy chain
immunoglobin locus genes in native positions (n = 42) [26,
27], in which there are two instances of sequential alternat-
ing tropy in-series amorphousity (n = 5, n = 4), two in-
stances of sequential mesotropy in-series (n = 8, n =
3), as well as several instances of sequential micro-
structural anisotropy (n = 5, n = 3, 3, 3).

Therefore, based on the findings of this study on the
micro-segmentation of a 0.73-mm length plus (+) strand
LMNA gene-containing heterochromatin strand loop
segment and a 0.25 mm length minus (-) strand IGH_
locus-containing DNA strand loop segment, there is seg-
mental difference in DNA strand nano-compliance, in
which case intergene tropy loop segments with differ-
ences nano-compliance overlap as there exists micron
(um) scale segmentation of alternating mesotropy and
anisotropy; as such, heterochromatin DNA strand loops
can be characterized as anisotropy, mesotropy or amor-
phousity loop forms with micro-segmentation perceiving
various grades of the asymmetric tropy viscosity effect
for genes in juxtaposition separated by intergene base
distance of between 11.6 and 14 nanometers (nm; 13 -
15 bases), if two nucleic acid bases and a primed half-
phosphodiester bond in-tandem is considered to be
~1.75 nm in length.

Anglemetry of gene positioning angulation in the z, y-
plane and vectormetry for z, x-plane horizontal alignment
in two-dimensional linear space

Gene intergene tropy anglemetry is performed in 2-D
linear angulation space utilizing the strand specific ef-
fective intracellular pressure unit (P.g)-to-angle regres-
sion conversion, based on which it has been determined
that anisotropic genes are situated between 60.5 and
82.3° in the z, y-vertical plane and mesotropic genes are
situated between 60.4 and 11.7° in the z, y-vertical axis
plane; in which case the initial momentum vector for an-
isotropic gene alignment, M, opy, from origination is
between 82.3 and 60.5° in the z, y-vertical, whereas the
initial momentum vector for mesotropic gene alignment,
Mk tropy + Mch nmn tropy (#M), from origination is 60.4
and 11.7° from above the z, x-horizontal plane.



Sarin Translational Medicine Communications (2019) 4:13

Therefore, the effective momentum (m.g; ma, my;) for
gene transcription is inversely proportional to the effect-
ive cell pressure (P.g) required for horizontal alignment
of gene intergene loop segment tropy (Fig. 4).

Based on these findings of the study, sequentially
located anisotropic genes in a gene intergene tropy seg-
ment of the same will transition into the z, x-horizontal
plane reading frame for gene transcription from between
origination angulations of between 60.5 and 82.3° in the
z, y-vertical plane where the originating momentum
vector (mch tropy) will encounter a singular viscosity
effect at intergene base tropy segments, in comparison
to mesotropic genes situated between 60.4 and 11.7° in
the z, y-vertical axis plane that will align within the inner
nuclear membrane (INM) nucleoplasm where dual
viscosity effects are encountered at intergene base tropy
segments, in which case the additional inner nuclear
membrane nucleoplasm chromatin viscosity tropy effect
for mesotropic gene alignment is attributable to the
additive effect of nuclear pore traffic-related to peptide
synthesis rough endoplasmic reticular network of the
inner nuclear envelope. Therefore, the pressurotopic
model for a binomial always-on heteroeuchromatin tran-
scription is proposed in which mesotropic DNA loop
segments of supra-pressuromodulated genes are tran-
scriptionally active at the inner nuclear membrane
(INM), while anisotropic DNA loop segments of infra-
pressuromodulated genes are transcriptionally active at
the at the nucleolar peripheral nucleoplasm interface.
The pressurotopic loop segment-dependent eukaryotic
gene transcription builds on the static heterochromatin-
dynamic euchromatin model in which chromatin is
inactive at the nuclear envelope and active in the nucleo-
plasm in proximity to mobile nuclear pore complex
subunits [11, 14-16] (Fig. 5).

There exists significant variance of X intergene base
segment loop tropy, although genes are positioned at
similar angulation in the z, y-vertical plane as has been
determined in the study; for example, the ¥ intergene
base segment loop tropy for CYGB is 4.11804E + 05 (P
0.248), whereas that for DRDI is 2.041819E + 06 inter-
gene bases (P.g 0.249), which align to 0y = 0° from an-
gulations of 60.0° and 59.9°. Therefore, based on such
determinations gene angulation distances to the z, x-
horizontal plane line of unity can be determined from
the hypotenusal tropy inclusive of the interposed gene
bases, as in the example of MIR4537, a 3 A 7 gene posi-
tioned at an angle of 82.3° (P 0.064), for which the
hypotenusal tropy length inclusive of intervening genes
is 3.55373E + 05 bases, and thus the reverse extrapolated
arc tropy distance from angulation to the z, x-horizontal
plane (Ho) is 2465E + 02 microns. Therefore, study
findings are applicable to further study of heteroeuchro-
matin loop segment z, x-plane alignment kinetics when
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the inverse relationship between effective pressure and
momentum, P (0.064 > x < 0.245) - my = Py
(0.245 > x < 0.648) - my; (Pogr - My, tropy = P - m
tropy T Mch nmn tropy) for DNA strand loop alignment
in nuclear protoplasm.

Differentiated neuron cell sub-types differ in the range of
effective cell pressures for neuroaxis gene expression in
reference to tissue macro-compliance

During retinoic acid-mediated neural differentiation of
NT2/Dlembryonal lineage pluripotent cells (SOX1*/
SOX14’) in vitro [42], it has been shown that SOX1 (P
0.318; Oy = 51.6%), expression re-increases at 2-weeks in
response to RA, while SOXI14 (P 0.219; 05 = 63.5%)
expression increases over the same 4-week period, which
is plasmid-expressed in HeLa cells at anisotropic pres-
sure. Since SOXI determines neuronal lineage analogous
to SOX2, and SOXI4 determines neural differentiation
state analogous to homolog TUBB3 in differentiated
radial pre-cursor cells (RPs) [43], the P interval for dif-
ferentiating neural cells can be delineated as being
between 0.219 and 0.318 esebssiwaagoTq units, in which
case the P interval for differentiated neuron sub-types
from distal to proximal in the neuroaxis is between a Peg
of 0.434 to 0.203 esebssiwaagoTq units based on pres-
suromodulation mapping. Furthermore, since glial cell
marker, BCAN (P;0.243, 0, = 60.6°) [44, 45], and neur-
onal markers, SOXI14 and RBFOX3 (P 0.213; Oy =
59.7% NeuN), are differentially expressed in symbiotic
cell types; brain-specific protein of the Aggrecan class,
Brevican (BCAN, P 0.243; 6, = 60.6°), is proposed to
be the CNS hyaluronic acid-stabilizing chondroitin sul-
fate proteoglycan that increases the P interval for
certain differentiated neuronal cell types (ie hippocam-
pal/Papez circuit).

The upper limit of effective intracellular pressure for
proprioceptive afferent lower motor neuron [lmn (a)]
gene expression is at that of gene UNCI3A (P.g 0.434;
Oy = 37.6%); ortholog, munci3-1), a nuclear membrane-
associated heterochromatinized gene required for pre-
synaptic vesicle docking exocytosis, which has been
shown to be under-expressed following application of
sodium channel blocker tetrodotoxin (TTX) in a stand-
ard in vitro culture model for study of pre-to-post syn-
aptic neuronal activity [46]. In addition, post-synaptic
scaffold protein SHANK2 (P < 0.301; Oy = 53.6°) has
been shown to be over-expressed in the model, and rep-
resents the effective intracellular pressure upper limit for
gene expression in secondary upper motor neurons
[umn (asc)] to thalamic nuclei. Furthermore, since it has
been shown in a murine model of regulator of G protein
signaling gene differential expression in the corpus stri-
atum basal ganglia nigral mesencephalic dopaminergic
circuit (bgnc) in response to DIR antagonist/D2R
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agonist pharmacological modulation in vivo [47], and
RGS2 (Peg 0.298; Oy = 54.0°) shown to be differentially
expressed by high density array following synaptogenesis
of plated neuronal precursors in vitro [46], the effective
cellular pressure interval range for gene expression in
basal ganglia nigral circuit deep brain nuclei neurons in-
cludes genes RGS2 and RGSI6 (P 0.251; Oy = 59.79),
which implies that RGS4 (P 0.118; 6y = 75.8°) is the
murine paralog for the human RGSI6 gene based on the
findings of this study. Dopamine receptor 1 gene DRDI
(Poge 0.249; Oy = 59.7°) co-expresses with RGSI16, and
DRD?2 is expressed at a P of 0.217 (0 = 63.8%)], the
effective intracellular pressure range for basal ganglia
nigral neuronal circuit neuronal gene expression is
delineable as being between 0.217 and 0.298 esebssiwaa-
goTq units, which are overexpressed on spiny neurons
of the basal ganglia circuit by the late telencephalic
development stage [48].

Neuronal nuclei protein (NeuN; RBFOX3, P 0.213)
has been shown to be expressed in pyramidal neuron
layers (I-VI) of the cerebrum [bral, pyr umn (arc)], gran-
ule cell layer neurons (gr) of the cerebellum (bell) and 3-
layered hippocampal formation Papez circuit (capc) by
high affinity antibody histochemistry [49]. In the murine
Sox1™*'* model, early neuronal differentiation gene
SOXI (P 0.318; Oy = 51.6°) is maximally expressed in
the periventricular zone and hippocampal Papez circuit
[50], but does not appear to be expressed in the cerebral
cortex (bral), while NGB (P 0.305; 6y = 53.29) globin is
minimally expressed in human brain cortex and CYGB
(P 0.248; O\ = 60°) globin shows positive expression in
the hippocampus [51]. Thus, the effective intracellular
pressure interval for cortical telencephalon neuronal
gene expression is determined to range between 0.213
and 0.305 esebssiwaagoTq units (bral); whereas, the Py
range for hippocampal formation Papez circuit (capc)
neuronal gene expression is delineated as being between
a Py of 0.318 and the effective cell pressure for expres-
sion of dopaminergic receptor DRD3 (Pgy 0.203; 0 =
65.2°) [52], which is also the P4 for expression of GRINI
(Per 0.203; 05 = 65.2°), a NFE2L2 (Po70.331; Oy = 50.2°)
target gene, as has been shown by DNA complex/
transcription factor to NRF-1 antibody by electromo-
bility super-shift assay [53]. Furthermore, since
NUMAI (Pgg 0.311; Oy = 52.4°%) is shown to be differ-
entially upregulated in cryptorchidism by qRT-PCR
[54, 55], and ovarian theca cell origin INSL3 (P
0.321; Oy = 51.2% is shown to be expressed in the
hypothalamic neuron projections to the posterior pituitary
by in situ hybridization [56], the upper limit of the Py
range for gene transcription for peri-ventricular thalamic
deep nuclei neurons will be in-between a P4 of 0.305 and
0.311, whereas that for the hypothalamic pituitary axis
(pituit) will be inclusive to 0.331 P esebssiwaagoTq units.
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Based on the pressuromapping findings of the study,
the upper limit interval for peripheral lower motor
neuron (lmn) gene expression is definable as being be-
tween a Pgy of 0.434 and 0.311 (> 0.305); whereas, the
range for gene expression is between a P.g of 0.305 and
0.213 for cerebrocortical upper motor neurons, between
a Peg of 0.318 and 0.203 for hippocampocortical neu-
rons, and between a P, of 0.298 and 0.217 for basal
ganglia spiny neurons. Therefore, there exists an inverse
relationship between effective range of whole cell com-
pliance and tissue macro-compliance (Regfective whole cell
compliance I macro-compliance = K), which is attributable to
differences in regional negative macro-pressuromodula-
tion in a tissue with cell populations arranged in the
form of nuclear groups (ie hyaluronate matrix), and at-
tributable to differences in the same across tissue types
with differences in stromal stiffness (ie calcified
matrix). In corollary, the effective cell pressure range for
mesenchymal stem cell (MSC) gene expression is deline-
able as being between a Peff of 0.648 and <= 0.118, in
which case the upper limit is attraibutable to cell-to-cell
focal adhesion formation within myeloid bone caverns.
Furthermore, based on the study findings, RGSI8 (P
0.205; Oy = 65.2°), RGS16 (Poy 0.251; Oy = 59.7% human
paralog of murine RGS4), Inc-RXFP4-5 (Pog 0.314; Oy =
52.1% pituit), RGS13 (Pgs 0.360, Oy = 46.5"), CEACAMI
(P 0.384; Oy = 43.6°), SLC25A44 (P 0.395; Oy =
42.3% and RGS21 (P 0.413; Oy = 40.17) are expressed
within the lower motor neuron (Imn)-upper motor
neuron (umn) neural cell axis; and TSACC (Pg; 0.336;
O = 49.4%) and JUND (P 0.344; 6y = 48.4°) are non-
cell specific developmental biomarkers.

Expression of inner nuclear envelope and anti-apoptosis
pathway genes in response to dynamic strain-mediated
alterations in cellular compliance

Micropipette aspiration studies on nuclear envelope
elasticity utilizing fluorescent nuclear protein expression
plasmid transfectants to study rates of DNA displace-
ment over time and resultant changes in the surface area
expansion alpha power (a) as a measure of alterations in
nuclear envelope deformability [29-31]. Study of nuclear
stress response to tonicity in TC7 renal epithelial cell
transfectants in which sub-nuclear displacement rates of
GFP-lamin B1 during constant aspiration pressure appli-
cation (/, creep compliance; kPal. sec’!) [30] has shown
more significant heterochromatin displacement in hyper-
tonic and isotonic nuclei (¢ = 0.28-0.32) in comparison
to hypotonic nuclei (¢ = 0.21), in which case shrunken
and unswollen nuclei are less deformable at the onset
(Jinitiar = 0.1) in comparison to swollen nuclei (/i = 1,
kPa') with a greater initial elastic dilation modulus (K,
mN/m), implying that hypo-osmolar nuclear swelling
increases cell membrane compliance. And, subsequent
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study of sub-nuclear GFP-fibrillarin (or upstream bind-
ing factor 1, UBF1-GFP) displacement in which whole
cells, Saos-2 carcinoma, HeLa and human venous endo-
thelial (HuVec), exposed to shear stress from 10 to 40
dyn/cm? (1 to 4 Pa) or to compressive stress of 0.1 MPa
over 60 minutes [31] have shown discordant results in
alpha power («) response to 10 dyn/cm® physiologic
shear strain for HeLa cells as compared to in HuVec
cells in which there is a parabolic comparative increase
in mean standard displacement (MSD) alpha power at
40 dyn/cm?, as the equivalently-increased alpha response
due to 10 dyn/cm? of shear stress in HeLa cells or 100
kPa of compressive stress in the same will be a result of
mitochondrial challenge oxidative stress-exothermy due
to differences in the initial effective cell pressure (P.g)
setpoints of Hela carcinoma cells and HuVec endothelial
cells. Furthermore, by the study of nucleus mechanical
properties in EMD gene-deficient (-/y) differentiated
embryonic fibroblasts, it has been determined that sex-
linked deficient MEFs have a lower nuclear membrane
dilation modulus (K)-to shear modulus (4) ratio than
wild-type (WT) fibroblasts, 2.1 as compared to 5.1 [32],
in which case it has been shown that EMD gene-defi-
cient cell nuclear envelope is more rigid in mechanical
stain-free conditions, as it has a more significant decay
exponential (¢! ™) than that for the wild-type fibro-
blast (WT), -0.21 and -0.04, based on nuclear GFP-lamin
A/C signal intensity. Therefore, since EMD gene-defi-
cient fibroblasts are less sensitive to mechanotransduc-
tion in comparison to wild-type MEFs, and the EMD*"Y
wild-type fibroblast gene P is 0.234 (EMD, 65 = 61.79),
the cellular effective pressure in EMD™ is predictable as
being relatively constant at a P.g of < 0.234 esebssiwaa-
g0Tq units during mitochondrially-mediated apoptosis.
Cell nucleus deformability in dynamic strain condi-
tions has been studied in LMNA gene (-/-)- or EMD
gene (-/y)-deficient fibroblasts as compared to wildtype
(WT) fibroblasts, in which anti-apoptosis pathway-re-
lated gene expression has been studied in MEFs subject
to low-frequency (1 Hz) low-grade biaxial mechanical
strain (4 to 10%) at for one to 24 hours and [33-35].
Based on the findings of studies considered altogether,
both LMNA gene- and EMD gene-deficient MEFs are
mechanotransduction-impaired [34]; however, in the
former due to increased nuclear envelope deformability
as nuclear envelope perceived mechanical strain corre-
lates with applied strain in lamin A/C-deficient cells,
whereas in wildtype MEFs applied strain is cell mem-
brane perceived and mechanotranduced to compara-
tively less deformable nucleus of WT fibroblasts.
Furthermore, based on cells studied over in mechanical
strain-free conditions by phase contrast time-lapse [33],
of the two inner nuclear envelope protein deficient cell
types with discordant nuclear envelope rigidity, lamin A/
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C-deficient cells show increased nuclear dynamics as
early as 1 hour, during which neither LMNA gene-defi-
cient nor WT fibroblasts express immediate early re-
sponse 3 (IER3, IEX-1 homolog; P.g 0.204, 0, = 65.4°) or
early growth response-1 (EGRI; Peg 0.199, 04 = 66.0%),
whereas emerin (EMD)-deficient fibroblasts express
IER3 as they must transcribe at a P.g of between 0.204
and 0.199 at baseline. In fibroblasts subject to between 2
to 4 hours of 4% biaxial cyclic strain, qRT-PCR
shows significantly increased expression of both NF-
kB pathway genes IER3 and EGRI in WT MEFs [33],
which indicates that mechanical strain decreases P
from > 0.234 to in-between 0.199 and 0.204 units in
mechanotransduction-sensitive EMD*Y/LMNA*'*  fibro-
blasts at which JER3 and EGRI gene transcription occurs;
whereas, LMNA gene (P 0.184; 05 = 67.8%)-deficient fi-
broblasts transcribe at a relatively constant P.g < 0.184
units during which neither JER3 nor EGRI is transcribed
similar to WT fibroblasts. Since LMNA™" fibroblasts be-
come qRT-PCR positive for JER3 and EGRI in response to
mechanical strain, then it can be supposed that cellular
pressure initially is around a Peg of 0.167 with applied dy-
namic stain during which LMNB2 (0, = 69.8%) s
expressed in the mechanotransduction in-sensitive inter-
val, followed by an increase in Py into the 0.197 — 0.204
units range in which LMNBI (P.g 0.197; 65 = 66.2°) is
expressed, due to which the mechanotransduction sensi-
tivity of the LMNA gene-deficient fibroblast nuclear
envelope is maintained within the same. Based on these
findings considered together, the Pg interval between
0.172 - 0.184 esebssiwaagoTq units would be the mechano-
transduction insensitive range for cellular gene expression.

Expression of inner nuclear envelope and extracellular
matrix pathway genes in response to substrate stiffness
The effect of gel stiffness on cell morphology has
been studied in vitro for contrasting cells grown on
collagen I or fibronectin-coated 3 to 7.5% poly-acryl-
amide gels varying with shear elastic moduli for
cross-linked stiffness (G, Pa) ranging between 0.002
to 55 kPa, in which it has been determined that actin
stress fibers begin to develop in GFP-actin expressing
fibroblasts (MEFs) at a stiffness of between 1.6 and
3.6 kPa or in synergism with EGFP-actin wildtype
(WT) transfectants of the same [36]. Based on these
findings on altered cellular phenotype as a result of
gel stiffness mechanotransduction force (G’), it can be
inferred that the physiologic range of effective cellular
pressure is between 0.180 and 2.9 kPa in-between the
Gy to S phase of the cell cycle during which endothe-
lial cell (EC) sprouting occurs during formation of
cytoskeletal stress fibers; and that an additional in-
crease in cellular pressure to between 2.9 and 28.6
kPa results in progression to binucleation followed by
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EC diaphragmed fenestration-associated with mitogen-
esis multi-nucleation. Based on MMTV-Her2/neu,
myc, ras mammary tumor stiffness studied in situ (E,
kPa) and tensional homeostasis studied in response to
applied shear force in vitro (dynes/cm?) [37], when
solid tumor tissue pressure is at 4.05 kPa, then it can
be inferred that 1.59 kPa of synergistic positive
mechanotransduction pressure will be attributable to
secreted collagen I fibril matrix if maximum concen-
tration is 4.0 mg/mL, which will be expressed at an
effective cell pressure (P.g) range of 0.235 — 0.241 for
the expression of tumor tissue collagen ligand genes
COLIAI (Pegr 0.241; 65 = 60.9°) and COL6AI (Peg
0.235; O = 61.6°) preceded by expression of integrin
receptor (ie avP3) that requires between 1.1 and 1.6
kPa of applied force for ectopic vector expression [36,
37]. Additionally, since an applied shear force of 140
dynes/cm?® that results in focal adhesion formation
(FAK") parallels an increase in fibronectin (FN)
matrix rigidity (G’) with an increase in Ki67 prolifera-
tive index during MEK inhibitor application (ie
PD98059) [37], therefore the shear force interval be-
tween 40 and 140 dynes/cm® will be the effective
intracellular pressure interval between the G, and S
cell cycle phase, which is between 0.235 to 0.283
esebssiwaagoTq units [26, 27]. Furthermore, since
during the differentiation of human adipose tissue
stromal progenitor cells (HADSCs) or myeloid mar-
row mesenchymal stem cells (MSC) into chondro-
blasts results in the spatial expression of COL2A1
isoforms 1 and 2 as early day 5 as chondrocyte cell-
specific marker [57, 58], then the transcriptional acti-
vation of COL2AI (P, 0.118; 65 = 75.8°) both dir-
ectly and indirectly by Soxl and Nkx3.2
respectively [59] will be the initial positive pressuro-
modulation event that increases effective cell pressure
in MSCs upwards and then to an Py of around 0.184
esebssiwaagoTq units (LMNA) with resultant chon-
drocyte lineage differentiation, after an initial decrease
in Py by retinoic acid (RA) pathway activation [38].
The relationship between stoichiometry of lamin A/C
to lamin-B1 protein and mRNA expression across tissue
cell types (ie MSC, HSCP; U251, brain) and cellular
microelasticity (kPa™) has been studied in parallel with
modeling of the time constant (1/7; sec™) for lamin A:B
expression relationship [38], in which it has been deter-
mined that the lamin A/C : lamin Bl expression ratio
follows E®° with lamin B1 expression follows E°* for the
spectrum of cell types, and in parallel that the lamin A:B
time constant (r) proportionality is viscosity/elasticity.
Based on the findings of this study, osteo-prone human
mesenchymal stem cells from marrow (MSC) express
LMNA (P.g, 0.184; 6, = 67.8%) but at a substrate stiff-
ness of 12 kPa, which would be due to synergistic
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negative macro-pressurization, which further implies
that cellular focal adhesionogenesis is required for ex-
pression of toti-pluripotency marker CD34 (P 0.648;
Oum = 11.7°) in the myeloid marrow cavern [26, 27], for a
cell type that is functional over a wider range of cellular
compliance. Hematopoietic stem cell progenitors from
marrow (HSCP), normal brain cells (unspecific) and
orthotopic xenograft GBM (U251) express LMNBI (Peg
0.197, 65 = 66.2°% ~ constant LMNB2, P 0.167) at a
substrate pressure between 0.1 and 0.2 kPa; moreover,
based on the correlation between application of syner-
gistic pressure and LMNBI gene expression across the
spectrum of cell types inclusive of osteo-prone cell types
(E°?) [38], the effective intracellular pressure (P.g) at
baseline is greater than extracellular stromal pressure in
osteo-prone mesenchymal stem cells (MSC), whereas
the effective intracellular pressure (P.g) at baseline ap-
proximates extracellular stromal pressure in the latter.
Furthermore, the lamin A/C: lamin Bl expression ratio
that favors (cart >) skull > femur > MSC for comparative
osteo-prone cell types in response to 12 kPa of MSC
equivalent applied pressure for LMNBI expression (Peg
0.197) is attributable to a narrower functional range of
cellular compliance in comparative cell types inclusive of
osteocytes and chondrocytes.

Nuclear envelope mechanotransduction in response to
dynamic strain and pharmacological signaling
The dynamic strain responsiveness of the cell nucleus
in mesenchymal stem cells (MSCs) subject to 0.2 to 2
Hz cyclic dynamic loading (3% strain, 10 min) has
been studied with the application of inhibitors of mo-
lecular signaling such as lysophosphatidic acid (LPA),
myosin light chain kinase inhibitor (ML-7), F-actin in-
hibitor (cytochalasin D) and rho-associated protein
kinase inhibitor (Y-27632); studies in which nuclear
deformability has been measured with the nuclear as-
pect ratio and index (NAR, b/a, a/b; NDI, %) in com-
bination with ATP exocytosis and sarcolemmal Ca**
release measurements, and the condensation chroma-
tin parameter (CCP, %) utilized to detect nuclear
mechanotransduction sensitivity in parallel [39-41] in
pluripotent stem cells (MSC) cultured on hydrogels
with a substrate stiffness of between 5 and 10 kPa.
Based on the study of mechanotransduction strain
transfer in load-stressed MSCs following pre-treatment
with ML-7, nuclear deformability (NDI) is increased and
the yes-associated protein (YAP) pathway is activated as
during dynamic loading (DL), in contrast to with the ap-
plication of LPA, Y-27632 or CytoD during which nu-
clear deformability is decreased, and in the case of
lysophosphatidic acid (LPA), pERK/ERK ratio trends to-
wards decrease between control and dynamic loading
comparison groups [39] as does matrix stiffness [38];
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and by the study of alteration in chromatin condensation
in dynamic strain-loaded (DL) MSCs following pre-treat-
ment ML-7 and Y27632, CCP is indifferent at 30 sec in
comparison to conditioned media (CM) + DL controls
however cellular traction force (nN) decreases in re-
sponse to TGEp inhibitors or Y-27632, whereas LPA +
DL increases the chromatin condensation by 1.64-fold
during mitochondrial ATP exocytosis, intracellular Ca**
oscillation and increase in autocrine TGF-f [40]. There-
fore, these findings considered together are consistent
with the heterochromatinization of DNA effect of
LPAR agonist, lysophosphatidic acid (LPA) during dy-
namic loafing, being towards the inner nuclear mem-
brane due to increased rigidity of the nuclear
envelope as result of the positive pressurization effect
of LPA; and furthermore, the increase in nuclear en-
velope deformability however an indifferent hetero-
chromatinization DNA effect of cell membrane (CM)
receptor inverse agonist myosin light chain kinase in-
hibitor (ML-7) being a result of the negative
pressurization effect of ML-7 in synergism with dy-
namic loading (DL) that remains in the anisotropic
pressure range, Pog < 0.245.

Mechanotransduction sensitivity alterations due to
dynamic loading and resultant changes in lamin A/C
protein expression have been studied under during
the treatment of MSCs cultured in vitro with posi-
tive pressuromodulators HDAC inhibitor trichostatin
A (TSA), CytoD and D-mannitol [41], in which it
has been determined that deformation of the undif-
ferentiated MSC nucleus in response to applied dy-
namic strain is lessened within the lamin-A/C
protein transcription interval, LMNA (P, 0.184; 64
= 67.8%), as determined in the study. Since in dy-
namic strain-stressed cells there is a cell membrane
compliance-mediated decrease in nuclear Py into
the nadir pressure range for mesenchymal stem cells
as determined by pressuromodulation mapping [24,
26], COL2A1 gene transcription occurs (Peg 0.118;
0, = 75.8°) with resultant MSC origin CTGF gene
CCN2 (Peg, 0.166; 8, = 70°) transcription within the
mechanotransduction in-sensitive cellular P.y range
(> 0.118 < 0.167 esebssiwaagoTq units); therefore,
the Py pressuromodulation setpoint in toti-pluripo-
tent cells (ie MSCs) will be at that for transcription
factor ESRRB gene transcription (Peg, 0.172), which
is required for re-initiation of pluripotency in a dif-
ferentiated cell [60, 61], from which P.¢ decreases to
a peri-nadir Py around 0.118 esebssiwaagoT units
in part by mitochondrial oxidative stress-mediated
exothermy, or increases to a peak at 0.648 esebssi-
waagoTq units during the expression of a MSC ori-
gin matched limiting focal adhesion component (ie
integrin subunit : collagen fibril subunit).
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Conclusions

In this research, heterochromatin shift during eu-
chromatin gene transcription has been studied by paral-
lel determinations of DNA strand loop segmentation
tropy nano-compliance (esebssiwaagoTq units, linear nl),
gene positioning angulation in linear normal two-dimen-
sional (2-D) z, y-vertical plane (anglemetry, °), horizontal
alignment to the z, x-plane (vectormetry; ma, my, a.u.),
and by pressuromodulation mapping of differentiated
neuron cell sub-class operating range for neuroaxis gene
expression in reference to tissue macro-compliance
(Pefe).

Heterochromatin strand DNA loop micro-segmentation
structural nano-compliance is either amorphousity,
anisotropy or mesotropy loop segment forms perceiv-
ing various grades of the asymmetric tropy viscosity
effect, where between 3-to-5 and 8-to-11 genes are
arranged as one or two in-tandem alternating aniso-
tropic and mesotropic gene(s), or as in-tandem aniso-
tropic or mesotropic genes in juxtaposition separated
by intergene tropy base distance; for example, the
amorphousity loop segment form between positions
-12 to -4 in reference LMNA (P, 0.184; 0, = 68.4°)
on human 1q22 (+) is 5-0.234-(a_;5)-0.272 (m_iq)-
0.229 (a.10)-0.211 (a)-0.269 (m_g)-0.144 (a.;)-0.314
(m_g)-0.268 (m_5)-0.176 (a_4)-3". Based on this arrange-
ment of stranded chromatin DNA, an always-on pres-
surotopic model for gene transcription is proposed, in
which either mesotropy loop form genes positioned
between 11.7 and 60.4° (CD34) in the z, y-vertical
plane are transcriptionally active when heterochroma-
tin shifts towards the inner nuclear envelope margin
following the transcription of EMD (Peg, 0.234; 05 =
61.7%), during which mechanotransduction apparatus
sensitivity for linear increases in nuclear effective
pressure (P.g) into the expression range for collagen
fibril genes COL6AI (P 0.235 65 = 61.6°) and
COLIAI (P 0.241; 0, = 60.9°) for focal adhesion
(FA) formation and resultant cell specific increases in
nuclear pressure; or, anisotropy loop form genes posi-
tioned between 60.5 and 82.3° (MIR4537) in the z, y-
vertical plane are transcriptionally active when hetero-
chromatin shifts towards the central peripheral nu-
cleoplasm edge, during which transcription of inner
nuclear envelope peptide-coding genes LMNBI (P,
0.197; 65 = 66.2°) — LMNA (Pegs, 0.184; 0, = 67.8°)
to LMNB2 (P, 0.167; 6, = 69.8° regulates
sensitivity for linear increases (or decreases) in
mechanotransduction pressure esebssiwaagoT units.
Based on momentum vectormetry, the relationship be-
tween effective pressure and momentum is inverse pro-
portionality, Peg (0.064 > x < 0.245) - mp = Peg (0.245 > x
< 0'648) © Mg (Peff © My tropy — Peff © Mch tropy + Mch nmn
ropy) for DNA  strand loop alignment in nuclear



Sarin Translational Medicine Communications (2019) 4:13

protoplasm, which are applicable to further study of het-
eroeuchromatin loop segment z, x-plane alignment
kinetics.

The episodic sub-episode block sums (SEB) split-inte-
grated weighted average-averaged gene overexpression
tropy quotient is a linear normal measure of effective intra-
cellular pressure (P.) for determination of gene positioning
anglemetry due to primary and secondary linearization
effects, validation of the primary linearization effect is the
sebs intercept-to-sebssiwa intercept linearization quotient
(Dsebs/Dsebssiwa); in which case, normalization of the dppa-
sebs, dppmsebs effect predominates in anisotropic gene
MYC (Does/Depssiwa: 3:63; Pog 0.157; O = 71°), the uppa-
sebs, uppmsebs effect predominates in mesotropic gene
PRDMI (bses/bsessiwa: 345; Pogr 0.356; Oy = 47°), while
both the dppasebs, dppmsebs and uppasebs, uppmsebs ef-
fects are linear normalized in PRKCH (Dgeps/bsebssiwa: 3-17;
Per0.200; 05 = 65.8% as examples.

Based on the findings of this study considered together,
the precise mechanistic basis for alterations in chromatin
gene transcription eukaryotic stranded heterochromatin
arranged by structural pressurotopy nano-compliance in
DNA stand loop segments is effective cell pressure (Py)
regulated shifting of transcriptionally active DNA in-be-
tween the inner nuclear envelope margin and the
peripheral nucleoplasm edge and the z, x-plane horizontal
alignment of a gene by gene specific P,y within the cell
specific effective range of whole cell compliance in refer-
ence to tissue macro-compliance. The findings of this
study are therefore applicable to the further study of
changes in gene transcription in response to applied
mechanical strain-mediated alterations in nuclear enve-
lope deformability in silico.

Additional file

Additional file 1: Table S1. Sequential episodic sub-episode block sum
split-integrated weighted average gene overexpression tropy quotients
to final esebssiwaagoTy, for predicted neural axis gene overexpression
Gene loci sub-episode block structure variations include non-contributory
anisotropy (NCA), anisotropy converted to mesotropy (ACM), and/or 0.5-factor
adjusted stabilizing mesotropy or anisotropy converted to stabilizing isotropy
for anisotropy or mesotropy (stIAfM, stIMfA or stiMfM) that result in an initial to
final SEB conversion; and 2 previously reported episode and sub-episode
block structure is applied in all cases as per reference [25], in which gene/
gene loci at cusps of the delineated base intervals, SHANK2 (784,883), RBFOX3
(521,757) classify into the adjacent interval. (DOC 66 kb)

Abbreviations

ACM: Anisotropy converted to mesotropy; Dseps/Dsepssiwa: INtercept sebs/
intercept sebssiwa linearization quotient; d, dy , da: Distance of gene
intergene base tropy; dppasebs: Downstream part anisotropic sub-episode
block sum; dppasebs: Downstream part anisotropic sub-episode block sum;
dppasebssiwa: Downstream part anisotropic sub-episode block sum split
integrated weighted average; dppasebssiwa: Downstream part anisotropic
sub-episode block sum split integrated weighted average; NCA: Non-
contributory anisotropy; Peg: Effective intracellular pressure, esebssiwaagoTy;
prpTq: Paired point tropy quotient; SEB: Sub-episode block; stIAfM, stIMfA or
stIMfM: 0.5-factor adjusted stabilizing isotropy for anisotropy or mesotropy;
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uppasebs: Upstream part anisotropic sub-episode block sum;

uppasebssiwa: Upstream part anisotropic sub-episode block sum split
integrated weighted average; uppmsebs: Upstream part mesotropic sub
-episode block sum; uppmsebssiwa: Upstream part mesotropic sub-episode
block sum split integrated weighted average; © Oy, Oa, O: Gene angle; My
M (Mch tropy), Mt (Mech wopy + Men nmn tropy): Effective momentum
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