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Is the awakening produced by

benzodiazepines due to excitatory actions
of GABA?
Yehezkel Ben-Ari

Abstract

Benzodiazepines (BZDs) such as Zolpidem can produce a temporary revival of patients who have been akinetic and
apathic for years. The mechanisms underlying this “awakening” reaction are suggested globally to be related to an
activation of gamma-aminobutyric acid (GABA) inhibitory systems. However, brain trauma or cerebro-vascular
infarcts, like many other pathological insults, are associated with a shift of the polarity of GABA from inhibition to
excitation consequently to an increase of intracellular chloride concentration ([CI7];) levels. Experimental and clinical
observations suggest that BZDs generate paradoxical reactions in these conditions, hence the transient
“awakening”. The NKCC1 (Na-K-2Cl co-transporter isoform 1) chloride importer antagonist Bumetanide restores low
[CI7]; levels and an efficient inhibitory drive. It is therefore suggested that the administration of Bumetanide might

mechanism underlying the apathic/akinetic state.

provide a persistent “awakening” by shifting GABAergic actions from excitation to inhibition and attenuating the

Introduction

Awakening, a temporary revival of patients who have
been akinetic, apathic and with no reaction for years fol-
lowing a large brain damage, has been observed after ad-
ministration of drugs even if the mechanisms underlying
them remain unknown. Although rare, the awakenings
produced briefly by “sleeping pills” are now well docu-
mented [1-3]. Arnst et al. recently reported spectacular
effects of Benzodiazepines (BZDs) on a 29 years old pa-
tient after a severe hypoxic-ischemic brain injury and
following a history of alcohol abuse [4]. The patient suf-
fered from a severe impairment of arousal and difficulty
to maintain an arousal state. Magnetic resonance im-
aging showed signs of diffuse atrophy without hydro-
cephalus. For 8years the patient remained mute,
akinetic, incontinent, had muscle rigidity and no
affective reactions. Following a single dose of Zolpidem
(10 mg), the patient “managed to walk while being
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supported by the staff and phoned his father, who had
not heard his son’s voice for years. Despite evident retro-
grade amnesia, going back three years before the brain
injury, and an apparent hearing deficit, he was cheerful,
alert, and showing interest in the people and objects sur-
rounding him”. These transient effects (2h) were re-
peated only for 5days with a progressive reduction of
efficacy, and after that delay BZDs had no effects at all.
The treatment could however be efficient for short pe-
riods of time subsequently on special occasions, pro-
vided that they are infrequent.

Electroencephalogram (EEG) and magnetoencephalo-
gram source-spectral analysis indicate a small but signifi-
cant increase of beta and gamma band after Zolpidem
treatment. It is usually considered that Zolpidem re-
stores globally the excitation/inhibition imbalance due to
a reduced GABAergic inhibitory drive [1-5]. Williams
and colleagues reported an abrupt reduction of 6-10 Hz
oscillations and the coherence between the two hemi-
spheres in 3 patients with known positive response to
Zolpidem [2]. Unfortunately, the alterations produced in
Zolpidem non-responders were not investigated. Similar
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observations have been made after severe ischemic brain
damage and in patients with a variety of brain disorders
including severe degenerative ones, notably Parkinson’s
disease [6—11]. These effects are interpreted as a general
restoration of gamma-aminobutyric acid (GABA) inhib-
ition that has been hampered by the insult. However, the
exact underlying mechanism and the site of reduced
GABAergic inhibitory drive remains conjectural as these
cannot readily be determined from EEG measures. If
GABAergic inhibition has been impacted, it is funda-
mental to identify whether and which element of
GABAergic mechanisms is deficient to suggest a thera-
peutic avenue. Considering the wide range of actions of
Zolpidem and other BZDs, it is not astonishing that
their effects on awakening have not been identified.

Here, I suggest that the paradoxical effects of BZDs
are due to a shift of the polarity of GABA actions trig-
gered by the pathological insult: the excitatory actions of
GABA in post ischemic networks are increased by BZDs
leading to paradoxical reactions. Indeed, the polarity of
GABA actions is determined by intracellular chloride
concentration ([Cl7];) levels. When they are elevated,
GABA exerts depolarizing/excitatory actions; and when
they are low, GABA exerts hyperpolarizing/inhibitory
actions. The shift from hyperpolarizing/inhibitory to de-
polarizing/excitatory actions has been reported in a wide
range of disorders including ischemic insults and degen-
erative disorders [12-15]. Experimental observations
suggest that paradoxical actions of BZDs occur when
neurons have high [Cl7]; levels and excitatory actions of
GABA [16-18]. Therefore, I suggest that the ephemer-
ous effects of BZDs are due to high [CI]; levels and con-
sequent GABAergic excitation. In this scenario, brief
awakening by BZDs calls for the combined use of BZDs
and agents known to restore inhibition in order to trans-
form the brief effect to a long lasting one.

Activity-dependent dynamic changes of GABAergic
inhibition in disease

The degree of complexity of GABA actions is quite un-
surpassed. Many parameters impact the efficacy of
GABAergic signals and inhibition: the large number of
subunits of GABA receptors that determine the proper-
ties of GABAergic currents and pharmacological proper-
ties, the localization and distribution of these receptors
and their density, the connectivity of different interneu-
rons, the uptake systems that control GABA levels, and
the microglia and astrocytes that regulate extracellular
ionic distributions. With regards to the connectivity of
different types of interneurons, dendrites-targeted inter-
neurons act by controlling the glutamatergic input of
principal neurons and the generation of calcium cur-
rents, whereas somatic-targeting interneurons innervate
hundreds to thousands of principal neurons leading to a

Page 2 of 6

synchronized activity in phase with the end of the synap-
tic current [19-22]. In addition, GABA and Glycine an-
ionic receptor channel complexes have a unique
property that is not shared by excitatory glutamatergic
signals: the polarity of their actions depends largely on
the levels of ongoing activity. Hyperactivity and a wide
range of insults produce an accumulation of chloride
ions leading to depolarizing and often excitatory effects
of GABA [23-25]. Excitatory GABAergic signals can ac-
tivate sodium channels, voltage-gated currents and re-
move the voltage-dependent blockade of NMDA
receptor channels, leading to calcium influx with im-
portant long-lasting consequences on plasticity and net-
work operation [23, 26-28].

The polarity of GABA actions also follows a develop-
mental trajectory shifting from depolarizing/excitatory
to hyperpolarizing/inhibitory in all animal species inves-
tigated [23, 29-32]. This is due to an evolutionary con-
served progressive reduction of [Cl7]; levels mediated by
a decrease in the activity of a major chloride importer
NKCC1 (Na-K-2Cl co-transporter isoform 1) and an in-
crease of the chloride exporter KCC2 (K-Cl co-
transporter isoform 2) activity [23, 25] (Fig. 1). During
development GABAergic signals modulate cell prolifera-
tion, neuronal migration and growth as well as synapse
and neuronal ensemble formation [23, 33—-35]. The de-
velopmental stage at which the shift occurs is animal
species, brain structure and sex specific [23]. In addition,
there is an oxytocin-mediated neuroprotective transient
shift to hyperpolarizing actions during parturition and
birth [36, 37]. In experimental conditions, blocking the
depolarizing actions of GABA by knocking out KCC2 or
by in utero administration of NKCC1 antagonists pro-
duces deleterious effects including epilepsy and abnor-
mal behavior in mice [17, 38—41].

Quite astonishingly, extensive investigations have un-
raveled a return to high [Cl7]; levels and excitatory ac-
tions of GABA in many disorders and pathological
conditions. This has been observed in rodent models of
disorders that are generated in utero including Autism
Spectrum Disorders (ASD), Fragile X, Rett and Down
syndromes, maternal immune activation, various infant-
ile epilepsies due to migration disorders, etc [12, 18, 41—
53] Similar alterations are observed also in neurodegen-
erative disorders and adult insults or lesions including
spinal cord injury, chronic pain, brain trauma, Parkin-
son’s disease, Huntington’s disease, deleterious actions
of anesthetic agents, etc [12, 14, 54-62] High [CI];
levels and a disruption of ionic equilibrium are also ob-
served in brain tumors, notably neuro-glioblastoma [63—
67]. The higher [CI7]; levels are due to a higher NKCC1/
KCC2 activity ratio. Brain infarct also leads to similar
changes with high [Cl7]; levels and depolarizing/excita-
tory actions of GABA. Moderate to severe ischemic
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Fig. 1 Shifts in GABA polarity action in development and disease. Schematic representations of immature and mature neurons with GABAergic
actions during development and its reversal in pathological conditions. Left: Immature neurons have a high intracellular chloride concentration
([CI"]) due to a high expression of NKCC1 and a low expression of KCC2; (bottom) activation of GABA, receptors by GABA application (arrow)
results in a depolarization due to chloride efflux from the cell. Right: Mature neurons present low [CI7]; due to a low expression of NKCC1 and a
high expression of KCC2; (bottom) activation of GABA4 receptors by GABA application (arrow) results in a hyperpolarization. In pathological
conditions there is a reversal to immature patterns with high [CI"]; and GABA-induced depolarization

conditions increase NKCC1 and/or reduce KCC2 activity
[40, 68-75]. Therefore, in spite of the heterogeneity of
these insults and their generating pathogenic event, they
share a common reaction associated with high [CI7];
levels and depolarizing/excitatory actions of GABA (Fig.
1). Events underlying this shift include activation of ki-
nases regulating NKCC1 and KCC2, and brain-derived
neurotrophic factor released by microglia [40, 76-78].
Collectively, these observations illustrate the dynamic
changes of GABA actions, the central role of the
NKCC1/KCC2 ratio and their importance in the patho-
genesis of infarcts and severe brain damage.

Restoring low [Cl7]; levels and GABAergic inhibition
has been shown to attenuate many brain disorders in ex-
perimental conditons and in clinical trials. The most fre-
quently used agent to reduce [Cl7]; levels is Bumetanide,
a highly specific antagonist of the ubiquitously expressed
NKCCI1 chloride importer and the NKCC2 chloride co-
transporter present in the thick ascending loop of Henle,
hence its diuretic action. In animal models, Bumetanide
attenuates the severity of ASD, Parkinson’s disease,
chronic pain, epilepsies, anesthesia induced seizures, etc
[12, 71, 79—84] Furthermore, Bumetanide reduces ische-
mic infarction, cerebral swelling and neurological se-
quels in mice [71]. Successful clinical trials have also
been made using Bumetanide with the aim of reducing

[CI']; levels to treat ASD [85-88] and related genetic
syndromes with autistic features such as Tuberous Scler-
osis [89]. Pilot trials also show a similar efficacy to treat
Fragile X syndrome [90], schizophrenia [9] and Parkin-
son’s disease [91]. Collectively, these studies suggest that
the reduction of high [Cl7]; levels and the shift of the po-
larity of GABA from excitation to inhibition might pave
the way to innovative therapies of many disorders.

A working hypothesis: complementarity of Zolpidem and
Bumetanide

Paradoxical actions of BZD are also observed after
anesthesia where increasing doses of BZDs shift the ef-
fects from sedation to a paradoxical reaction with eu-
phoria or dysphoria and purposeless movements [92].
How does Zolpidem and related agents produce these
paradoxical reactions? Here, I propose that aberrant high
[CI7]; levels and excitatory actions of GABA underlie the
“awakening” produced by BZDs. In a comatose state,
BZDs enhance the excitatory GABAergic activity leading
to a paradoxical transient awakening instead of sleep
and reduced activity. As such, this suggests that GABA
exerts excitatory actions. Bumetanide might then restore
low [CI']; levels and efficient GABAergic inhibitory
drive, decreasing the fundamental consequence of the
initial trauma. Paradoxical effects of BZDs have been
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demonstrated in experimental conditions when [Cl7];
levels are high and the actions of GABA excitatory [41,
93, 94]. Phenobarbital also exerts paradoxical effects re-
ducing early seizures but aggravating repeated ones
when [CI7]; levels are increased [41]. In keeping with
this, a pilot study reported that Bumetanide attenuated
the severity of ASD and BZDs produced paradoxical re-
actions [95]. Collectively these observations raise the
possibility that the paradoxical effects of BZDs are medi-
ated by GABA excitatory actions that BZDs reinforce.
Since [CI7]; levels cannot be determined in humans,
these paradoxical actions of BZDs might justify the use
of Bumetanide to reduce the potantially high [Cl7];
levels, restore inhibition and attenuate the core apathic
and akinetic syndrome.

Therefore, two agents acting differently on GABAergic
networks, Zolpidem and Bumetanide, might emerge as
potentially useful producing an awakening reaction. The
former produces transient awakening effects that are not
readily reproduced with repeated administration, the latter
by reducing [Cl]; levels restores persistently GABA polar-
ity and the efficacy of inhibitory networks. The use of Bu-
metanide is safe with minimal side effects even when
administered for long periods, and it has been used for de-
cades to treat hypertension and brain oedema with easily
controlled side effects [96]. The administration of Bumeta-
nide alone or possibly in combination with BZDs might
therefore produce long term persistent awakening. This
has been tested efficiently in a co-administration of BZD
and Acetazolamide — a carbonic anhydrase inhibitor that
reduces [Cl]; — showing an enhanced effect compared to
the administration of BZD alone [60]. Also, Bumetanide
enhances BZD efficacy in ischemic damage [13], and sei-
zures are efficiently reduced by combined administration
of Phenobarbital or BZDs and Bumetanide [94, 97].
Therefore, a dual drug administration has shown some ef-
ficacy in these pathologies.

Conclusion

In conclusion, paradoxical actions of BZDs can be
viewed as a clinical signal reflecting a disturbance of the
regulation of [Cl7]; levels and the polarity of GABA. It is
therefore suggested that a similar mechanism might op-
erate in these patients. This also suggests that Bumeta-
nide, known in experimental and clinical situations
(pilot cases) to reduce/attenuate the severity of an insult,
might be useful to correct the fundamental cause of the
disorder. Clearly, low [CI7]; levels constitute a general
signature of insults that must be treated by restoring the
correct polarity of GABA actions.
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