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Abstract 

Background:  Accurate prediction and early recognition of type II diabetes (T2DM) will lead to timely and meaningful 
interventions, while preventing T2DM associated complications. In this context, machine learning (ML) is promising, 
as it can transform vast amount of T2DM data into clinically relevant information. This study compares multiple ML 
techniques for predictive modelling based on different T2DM associated variables in an African population, Ghana.

Methods:  The study involved 219 T2DM patients and 219 healthy individuals who were recruited from the hospital 
and the local community, respectively. Anthropometric and biochemical information including glycated haemoglo‑
bin (HbA1c), body mass index (BMI), blood pressure, fasting blood sugar (FBS), serum lipids [(total cholesterol (TC), 
triglycerides (TG), high and low-density lipoprotein cholesterol (HDL-c and LDL-c)] were collected. From this data, four 
ML classification algorithms including Naïve-Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machines (SVM) 
and Decision Tree (DT) were used to predict T2DM. Precision, Recall, F1-Scores, Receiver Operating Characteristics 
(ROC) scores and the confusion matrix were computed to determine the performance of the various algorithms while 
the importance of the feature attributes was determined by recursive feature elimination technique.

Results:  All the classifiers performed beyond the acceptable threshold of 70% for Precision, Recall, F-score and Accu‑
racy. After building the predictive model, 82% of diabetic test data was detected by the NB classifier, of which 93% 
were accurately predicted. The SVM classifier was the second-best performing classifier which yielded an overall accu‑
racy of 84%. The non-T2DM test data yielded an accurate prediction score of 75% from the 98% of the proportion of 
the non-T2DM test data. KNN and DT yielded accuracies of 83% and 81%, respectively. NB had the best performance 
(AUC = 0.87) followed by SVM (AUC = 0.84), KNN (AUC = 0.85) and DT (AUC = 0.81). The best three feature attributes, 
in order of importance, were HbA1c, TC and BMI whereas the least three importance of the features were Age, HDL-c 
and LDL-c.

Conclusion:  Based on the predictive performance and high accuracy, the study has shown the potential of ML as a 
robust forecasting tool for T2DM. Our results can be a benchmark for guiding policy decisions in T2DM surveillance in 
resource and medical expertise limited countries such as Ghana.
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Background
Advances in research and technology have revolution-
alised medicine, resulting in improved health outcomes 
of complex diseases and enhancing longevity. However, 
there is still much to be achieved in regard to prevent-
ing and controlling diabetes mellitus (DM) and its effects 
or burden has been far reaching (1). From developing to 
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developed countries, the disease affects 1 in 11 people, 
and over 400 million people die from DM every year [1]. 
It is estimated that the DM prevalence will rise from 415 
million in 2015 to 640 million in 2040 while 232 million 
people are not even aware of their status [1, 2].

A significant proportion of diabetes carriers (> 90%) 
identify as having type II diabetes mellitus (T2DM)—a 
condition of the inability to control plasma glucose due 
to insulin insufficiency or resistance [1]. When affected, 
T2DM makes individuals unproductive [3, 4], disables 
them [5] and renders patients and their families finan-
cially impoverished due to life-long spending on medical 
and hospital bills [6]. Sadly, its effects are not just expe-
rienced by the affected alone but also hugely impact the 
global economy [2]. The American Diabetes Association 
has even stated that if the current trends of diabetes per-
sist, the economic cost of diabetes will reach $2.1 trillion 
by 2030 [2].

Despite its widespread implications, there is still no 
cure for the disease [1, 7]. Current treatments only pro-
vide relieve by modifying disease-associated symptoms. 
Meanwhile, the long latency period of the disease allows 
for targeting and tackling disease before conditions 
become irreversible [8–10]. In this  latency period,   the 
timing of detection and the accuracy of diagnosis are cru-
cial for ensuring predictive, preventive and personalized 
medicine (PPPM) [11].

Defined as the medical practice that systematically pre-
dicts the onset of chronic disease long before its clini-
cal manifestation, PPPM has the potential to influence 
treatment in time and influence optimal therapies [8, 12]. 
Further, PPPM is beneficial in multiple ways including 
1) delaying the onset of a chronic disease, 2) designing 
of targeted drugs, establishing the efficacy, potency and 
adverse effects of drugs on patients, patient stratifica-
tion and prevention of disease-associated complication 
[8, 12–15]. However, before the concept of PPPM can be 
operationalised, there is the need to recognise the exist-
ence of risk factors that are associated with human life-
styles and how these factors influence cardiometabolic 
health.

Majority of large-scale studies have shown that factors 
that are antecedence of T2DM are age [16], obesity [17], 
physical inactivity [17, 18], unhealthy diet [19–21], high 
blood pressure [22–24], high plasma glucose and high 
cholesterol levels [25]. With this knowledge, risk estima-
tion scores have been developed including the Framing-
ham Cardiovascular Disease (CVD) risk score [26]  and 
the Systematic Coronary Risk Evaluation (SCORE) estab-
lished by the European Society of Cardiology [27]. While 
these scores could signal if an individual will develop a 
disease, they are built from simple or few models and fail 
to account for complex variables [28]. Other studies have 

explored the use of the Suboptimal Health Status Score as 
a predictor of cardiometabolic diseases [10, 29, 30]. These 
studies have largely relied on traditional logistic regres-
sion and multivariate regression models to make predic-
tions. Although beneficial, the reliance on conventional 
regression is short-sighted, given they provide a modest 
information about the interaction between predictors. In 
addition, logistic regression might be less computation-
ally demanding but does not provide optimal predictions 
when there is a nonlinear interactions between factors 
[31] or when there is an imbalance in the number of cases 
and controls [32]. To overcome these, there is a need for 
a more advanced predictive tool such as machine learn-
ing (ML). ML does not make any statistical assumptions, 
such as normality, collinearity, linearity or nonlinearity, 
when building a predictive model. It has proven to be 
robust in building a predictive model and diversely used 
in domains such as education, health and business.

ML relies on algorithms that learn from observations 
or features and create models [33, 34]. Based on these 
observations, ML scans for patterns, highlights the com-
plex interactions between the predictors and ultimately, 
optimizes the performance of predictors. Moreover, ML 
display a better discriminatory power [35], operate with 
less focus on data distribution [36], handle multidimen-
sional data and create models from big data or utilized 
for real-time association analysis [37, 38]. Given its abil-
ity to transform data into a meaningful information, its 
application is now seen in medicine. When employed in 
clinical data, ML learns patterns of health trajectories of 
patients, can review or expose patient charts and detects 
subclinical abnormalities in several chronic diseases 
including coronary artery disease, cardiovascular, rheu-
matoid arthritis as well as T2DM [39].

Due to the rapid generation of big clinical data and 
the quest for accurate predictions, the interest in ML 
has increased dramatically [32, 40–45]. For example, Lai 
et al. (2019) [33] used Gradient Boosting Machine (GBM) 
and logistic regression to predict the onset of diabetes 
in a Canadian population. This study revealed an area 
under receiver operating curve (AROC) of 84.7% with 
71.6% sensitive and 84.0% with 73.4% for GBM and logis-
tic regression, respectively. While this study has shown 
novel insights, the outcome cannot be generalized. Other 
ML techniques have also been used elsewhere. Zou et al. 
[44] used random forest (RF), neural network, and deci-
sion tree (DT)  to predict diabetes in a population in 
Luzhou. However, the study could only  identify which 
algorithm was superior to the other and was not able to 
adequately predict diabetes due to limited indices and 
imbalanced data [44].

Using feature selection method on a cohort of diabe-
tes individuals, Sneha and Gangil (2019) revealed that RF 
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and DT algorithms had the highest specificities of 98.20% 
and 98.00% respectively [46]. Utilising four ML meth-
ods including k-nearest neighbors (KNN), multifactor 
logistic regression, multifactor dimensionality reduction 
and support vector machines (SVM), Farran et al. (2013) 
reported classification accuracies of 85% of diabetes and 
90% for hypertension. Sneha and Gangil (2019) explored 
the performance of six ML algorithms (RF, Naïve-
Bayes (NB), KNN, DT) and SVM. The researchers devel-
oped a predictive model for diabetes dataset for each of 
the ML algorithms. Out of the fifteen (15) attributes in 
the dataset, ten (10) were found, through a feature selec-
tion technique, to produce an optimal predictive model. 
The researchers generalized the selection of optimal fea-
tures from the dataset to improve the classification accu-
racy. The results of their study found DT algorithm and 
RF to be the highest at 98.20% and 98.00%, respectively.

T2DM arises from the interplay between genetic and 
environmentally acquired factors including diet, race or 
ethnicity. Hence, the present study uses four ML algo-
rithms, 1) NB, 2) SVM, 3) KNN and 4) DT to identify 
predictors of T2DM in ethnically distinct population, 
Ghana. Moreover, this study ranks the order of impor-
tance of the various attributes in the diabetic dataset.

Methodology
Methods and study design
Recruitment of patients was based on a purposive sam-
pling approach where T2DM patients who visited Komfo 
Anokye Teaching Hospital (KATH) for their medications 
were asked to participate. After this, we used a conveni-
ent sampling approach to recruit healthy individuals from 
three popular suburbs within the Kumasi metropolis.

Ethics approval
The study was approved by the Kwame Nkrumah Univer-
sity of Science and Technology (KNUST) in Ghana, the 
Committee on Human Research, Publication and Ethics 
(CHRPE), and the Human Research Ethics Committee 
(HREC), Edith Cowan University (ECU). Each of the par-
ticipants signed an informed consent prior to participat-
ing in the study.

Anthropometric examination
Aided by a standard sphygmomanometer (Omron 
HEM711DLX, UK), blood pressure measurements 
(Systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) were noted and recorded. Estimation 
of body fat was by Body Mass Index (BMI) which is 
calculated as BMI = weight (kg)/height (m)2.  Waist 
to height (WHtR  ratio was measured as waist (cm)/
height (cm).

Clinical data
Fasting blood samples were taken from antecubital 
vein of each participant into a gel separator, EDTA and 
fluoride oxalate coated tubes. Serum lipids, comprising 
total cholesterol  (TC), high-density lipoprotein -cho-
lesterol  (HDL-c), low-density lipoprotein -cholesterol 
(LDL-c)  and triglycerides (TG), were measured using 
an automated chemistry analyser (Roche Diagnostics, 
COBAS INTEGRA 400 Plus, USA). On the same instru-
ment, glycated haemoglobin (HbA1c) in EDTA tubes 
and fasting blood sugar (FBS) in fluoride tubes were also 
measured.

Inclusion and exclusion criteria
Cases
T2DM patients who have been clinically assessed by a 
medical doctor were invited to participate. Those who 
were identified as having type I diabetes mellitus or in 
any form of insulin treatment were excluded. The study 
excluded 34 T2DM from the 253 T2DM patients because 
of missing information. Thus, 219 participants were 
included in the final analysis.

Controls
Participants diagnosed with diabetes and/or hyperten-
sion were excluded. Moreover, those with digestive, res-
piratory, genitourinary disorders were excluded. At the 
end, 219 healthy individuals were included.

The mean age for the cases was 56.54 ± 9.89 and con-
trols was 55.10 ± 9.27. The number of females outnum-
bered the males (i.e. 61.4% females in controls and 57.3% 
females in cases) but the difference did not reach statisti-
cal significance (p = 0.80). Most of the participants were 
educated and employed. T2DM patients were primarily 
sedentary when compared with controls but there was no 
statistical difference in BMI between the groups. Gener-
ally, T2DM patients had higher FBS, HbA1c, and HDL-c 
when compared with controls. The controls had higher 
SBP and DBP but WHtR, TC, TG and LDL-c were not 
statistically different between the groups (Table 1).

Experiment
Data Pre‑processing and Feature selection
Figure 1 shows the process model of the classification in 
this work. As indicated in the figure, the data for each of 
the attribute is numeric with different form or scaling. 
The steps in the process model include cleaning, scaling, 
feature selection, test/train validation, classifier model 
building and evaluation. With this dataset, there was no 
issues with data imbalance as the number of T2DM 
patients in the dataset (N = 219) was the same as the 
number of persons without T2DM (controls) (N = 219). 
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The dataset contained  438 instances (participants) with 
eleven (11) different features (attributes). While  the 
attributes Age, BMI, SBP, DBP, HbA1c, FBS, TC, TG, 
HDL-c, LDL-c are the predictor variables (attributes), the 
T2DM class is the target variable. This division is essen-
tial especially that the approach is to build a predictive 
model with ML.

Among other factors, the performance of a classifica-
tion algorithm is largely dependent on the quality of 
the data. Data that is fraught with errors, such as outli-
ers, influence the performance of a machine algorithm 
[47]. Hence, the diabetes dataset used in this study was 
explored to eliminate outliers and errors. By visual-
izing the data through the lens of boxplot, no outlier 
was detected. In all the datapoints in the dataset, only 

Table 1  Demographic information of T2DM patients and healthy controls

Data presented as Mean ± SD. Tests of significance were two tailed (*p < 0.05) and bolded

Variable Control (n = 219) Case (n = 219) P-value

Age (mean ± SD) 55.10 ± 9.27 56.34 ± 9.76 0.1690

Age groups (years)

31–40 years 8 (3.7) 13(5.9) 0.1160

41–50 years 70(32.0) 49(22.4)

51–60 years 83(37.9) 82(37.4)

61–70 years 44(20.1) 60(27.4)

71–80 years 14(6.4) 15(6.8)

Gender
Female 135 (61.4) 133 (57.30)

BMI(Kg/m2) 0.8030

Underweight 11(5.0) 8(3.6)

Normal 91(41.6) 95(43.6)

Overweight 74(33.8) 73(33.5)

Obese 43(19.6) 43(19.7)

Education 0.0400*
Tertiary 29(13.3) 39(17.8)

Senior high 72(33.0) 50(22.8)

Junior high 71(32.6) 72(32.9)

Lower primary 28(12.8) 25(11.4)

No formal education 18(8.3) 33(15.1)

Occupation  < 0.0001*
Employed 147(67.4) 144(66.1)

Retired 21(9.6) 26(11.9)

Keeping house 14(6.4) 21(9.5)

Unemployed 26(16.6) 27(12.5)

Physical activity
Sedentary 30(13.8) 49(22.4) 0.0250*
Moderate activity 114(52.3) 89(40.6)

Active 74(34.0) 81(37.0)

Clinical/biochemical data
  WHtR 0.56 ± 0.08 0.56 ± 0.08 0.6060

  SBP (mmHg) 145.88 ± 24.33 139.61 ± 24.88 0.0080*
  DBP (mmHg) 84.63 ± 14.42 82.40 ± 13.22 0.0940

 FBS (mmol/l) 5.86 ± 0.95 9.23 ± 4.31  < 0.00001*
  HbA1c (mmol) 5.30 ± 0.77 8.35 ± 2.17  < 0.00001*
  TC (mmol/l) 4.69 ± 1.26 4.57 ± 1.18 0.0272*
  TG (mmol/l) 1.35 ± 0.97 1.22 ± 0.53 0.1120

  HDL-c(mmol/l) 1.24 ± 0.33 1.365 ± 0.32 0.0001*
  LDL-c(mmol/l) 2.88 ± 1.05 2.65 ± 1.09 0.0270*
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seventeen (17) of them were found missing. Hence, 
Expectation–Maximization (EM) algorithm was 
employed to compute for the missing data. EM algorithm 
incorporates statistical considerations to compute the 
“most likely, or maximum-likelihood, source distribution 
that would have created the observed projection data, 
including the effects of counting statistics “ [48].

To improve the performance of the algorithms and 
eliminate any possible bias, the predictive variables were 
scaled to a range of (0,1). Data scaling is a method used 
in ML to normalize the range of predictive variables 
(features) of data. Furthermore, the importance of each 
of the attributes (predictor variables) used in this study 
was explored and ranked according to their respective 
coefficients. The ranking demonstrates which among the 
attributes is/are the most important and least impor-
tant for detecting diabetes. We leveraged on the Recur-
sive Feature Elimination (RFE) from Scikit-learn using 
Python to compute and rank the importance of each of 
the attributes. RFE works by recursively removing attrib-
utes and building a model to rank the attributes [49]. It 
uses the model accuracy (coefficient) to identify which 
attribute is/are the most important in terms of their pre-
dictive influence.

Classification
The predictive models in this study were built on four 
different ML algorithms: KNN), SVM, NB andDT. While 
this study sought to predict T2DM and rank the order of 
the  predictive importance of the feature attributes, the 
goal was to also compare the performance of each of the 
model classifiers in predicting the  unseen data. These 
classifiers were selected based on their efficacy and the 
fact that they have been used widely for text classification 

(Kolog et. al., 2019). Altogether, the total instances of the 
data used in this study was 438 (219 each for the cases 
and controls. As shown in Fig. 1, we used train-test tech-
nique (42) to build the predictive models in this study. 
With this technique, the data was split into two, where 
80% was used to train the algorithms. The remaining 20% 
of the data was used to test the algorithms. Of the 438 
instances of the data (both controls and cases), only 350 
(80%) was  used for the training while the remaining 68 
(20%) was  used for the testing. The division of the data 
into testing and training was random. To avoid imbalance 
classification, the 350 instances of the training data com-
prised of 175 each for the case data (diabetic patients) 
and control data (non-diabetic patients).

NB are probabilistic classifiers that use Bayesian theo-
rem with naïve independent assumptions between the 
features or attributes [50] (Domingos & Pazzani, 1997). 
There are three main types of NB algorithms: Multino-
mial Naive Bayes, Gaussian Naive Bayes and Bernoulli 
Naive Bayes. These types are identified according to 
their classification techniques. Gaussian Naive Bayes 
was employed in this study because of its versatility to 
handle both continuous and discrete data. For instance, 
when the predictors take up a continuous value, Gaussian 
assumes that these values are sampled from a gaussian 
distribution. In our study, we sought to predict patients 
who are with T2DM (cases) or not (controls), Ck (where 
C1 = diabetes and C0 = non-diabetes) given that its pre-
dictor variables are x1, x2,…,xp which can be expressed as 
P(Ck|x1,…,xp). The Bayesian formula for calculating this 
probability is Eq. 1. From the equation, P(Ck) is the prior 
probability of the outcome, P(x) is the probability of the 
predictor variables, P(x|Ck) is the conditional probability 
or likelihood and P(Ck|x) is called our posterior probabil-
ity. This is further expressed in Eq. 2.

Fig. 1  Model for Classification where 0 is non-T2DM and 1 is T2DM
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 DT  is a decision support tool that uses a tree-like 
model of decisions and their possible consequences, 
including chance event outcomes, resource costs, and 
utility [41]. It consists of nodes and leaves expressed in 
hierarchical layers as indicated in Fig. 2. Each of the nodes 
is a divergent point where a particular characteristic of 
the data is tested, and the data split accordingly [51]. Just 
like the other ML algorithms, DT is not built based on 
any statistical assumption of the data, such as normality, 

(1)P(Ck |x) =
P(Ck).P(x|Ck)

P(x)

(2)Posterior =
PriorxLikelihood

Evidence

collinearity or correlation between explanatory variables. 
The capability of DT classifiers has prompted its applica-
tion in diverse domains. It can be used for decision analy-
sis in management sciences and operations research. The 
algorithms are nevertheless popular ML applications for 
classification problems.

SVM was originally developed for binary classifica-
tion, but it was later extended for multiple classifications. 
It is one of the most popularly used algorithms for both 
classification and regression due to its efficacy. What the 
algorithm does is to construct a line (hyperplane (s)) in 
datapoints expressed in high dimensional vector space 
[52]. As indicated in Fig.  3, the larger the margin the 
lower the generalization error of the classifier. Therefore, 
a hyperplane that is farther from the nearest training data 
point of any class (functional margin) is well separated. 

Fig. 2  Basic structure of decision tree showing three different hierarchical layers

Fig. 3  Pictorial representation of a) K-Nearest neighbor classification on datapoints b) SVM classification on datapoints in high dimensional vector 
space
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SVM algorithms use a set of mathematical functions 
that are defined as the kernel. Kernel function contains a 
mathematical function that takes data as input and trans-
forms it into the required form. Examples of SVM kernel 
functions are linear, nonlinear, polynomial, radial basis 
function (RBF) and sigmoid. In this work, we tried all the 
kernel functions on our data and later arrived at using 
RBF due to its optimality on our data.

KNN algorithm is a classification algorithm that works 
by using distance matrix to find k most similar instances 
in the training data for test data [53].The mean outcome 
of the neighbors is taken as the prediction. Just like 
k-means in clustering, KNN algorithm commonly uses 
Euclidean distance. Mathematically, lets represent xi as 
input sample with p features (xi1, xi2,…,xip), n be the total 
number of input samples (i = 1,2,…,n) and p the total 
number of features (j = 1,2,…,p) (69). The Euclidean dis-
tance between datapoints is given by Eq. 3. In this study, 
we implement KNN from sklearn machine learning 
library.

Classifiers evaluation
The ML algorithms used in this study were evaluated 
according to their predictive strengths. Thus, we com-
puted for the Precision, Recall, F1-score and Accuracy of 
the algorithms. Recall is the proportion of the instances 
of the test data that were correctly identified by the clas-
sifier model based on the trained data, while Precision 
is the proportion of the identified instances of the data 
that were accurately predicted by the algorithms. The 
harmonic means of Precision and Recall constitute the 
F1-score or F-measure. Given the number of real positive 
(p) cases and the number of real negative (n) cases in the 
data, the precision, recall and F1-score are indicated in 
Eqs. 3 – 5, where tp is true positive, fp is false positive and 
fn is false negative.

Additionally, we computed the Area under Receiver 
Operating Characteristics curve (AROC) and the confu-
sion matrix of the algorithms. The figures shown in the 
second column of Table 3 are ROC curves which depict 

(3)d
(

xi , xj
)

=

√

(xi1 − xj1)
2
+ (xi2 − xj2)

2
+…… . + (xip − xjp)

2.

(4)Precision =
tp

tp+ fp

(5)Precision =
tp

tp+ fn

(6)Precision = 2x
PrecisionxRecall

Precision+ Recall

the abilities of the various classifiers. The discriminatory 
thresholds of the classifiers are varied. ROC curves are 
typically used in binary classification to study the output 
of a predictive model. As indicated in Table 3, ROC curve 
typically features true positive (sensitivity) rate on the 
y-axis and false positive rate (1-specificity) on the x-axis.

Confusion matrix, also called the error matrix, is a tab-
ular representation of the performance of an algorithm. 
The computation of the confusion matrix prompted the 
number of instances that were correctly predicted and 
falsely predicted. As indicated in Table  3, the first col-
umns contain contingency tables (confusion matrix) for 
each of the algorithm. From the confusion matrix tables, 
the predicted class is on the row while the actual class is 
at the column.

Results and analysis
Descriptive
The mean of most of the attributes for both the patients 
with T2DM and without T2DM vary but insignificantly. 
A notable significant difference is the means of HbA1c 
and FBS for T2DM and those without T2DM. The mean 
score of the HbA1c of T2DM patients (mean = 8.1) is 
higher than that of the non-T2DM patients (mean = 5.3). 
Generally, the mean score of the parameters in patients 
with T2DM was higher than the patients without T2DM 
except for SBP and DBP (Fig. 4).

 Relationship structure among features 
There exists reasonable overlap in the classification of 
T2DM and non-T2DM cases based on the two orthogo-
nal linear combinations of the features that explain most 
of the variability in the data (Fig. 5). In terms of relation-
ships among predictors, there exist a strong positive rela-
tionship between SBP and DBP, LDL-c and TC, Age and 
TG and FBS and HbA1c, based on the angles between the 
vectors for the features (< 30°). SBP, DBP, BMI, Age and 
TG seem to be uncorrelated with HbA1c, FBS, HDL-c, 
as the angle between these vectors is approximately 90°. 
SBP and DBP contribute highly to classifying the control 
group, whilst HbA1c, FBS and HDL-c are most influen-
tial in classifying subjects with T2DM.

Classification
Table 2 shows the performance of the various ML algo-
rithms in terms of their scores in Precision, Recall, 
F1-score, weighted average and Accuracy. As indicated in 
Table 2, all the classifiers performed beyond the accept-
able threshold of 70% for Precision, Recall, F1-score and 
Accuracy. However, the performance of the individual 
classifiers varied slightly in all the parameters. From the 
table, after building the predictive model with NB, 82% 
of diabetic test data was detected by the algorithm of 
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which only 93% of them were accurately predicted. The 
F1-score for diabetic patients was 87%. With regards to 
the non-T2DM data, 93% of the instances of the test data 
were detected by the NB algorithm of which only 82% of 
the detected instances of the non-T2DM test data were 
accurately predicted. The overall accuracy of the NB 
algorithm is 87%, which is the highest of the performance 
of all the algorithms.

The SVM algorithm was the second-best performing 
algorithm. The algorithm yielded an overall accuracy 
of 84% for predicting both the cases (T2DM data) and 
controls (non-T2DM data) as contained in the test data. 
With SVM performance, only 73% of the T2DM test data 
was detected but 97% of the detected instances of the 

data were accurately predicted (precision). In a similar 
vein, the non-T2DM test data yielded an accurate predic-
tion score of 75% from 98% of the detected proportion of 
the non-T2DM test data.

KNN and DT yielded overall accuracies of 83% and 
81% respectively. Although NB and SVM were better, the 
performance of DT and KNN signify a good predictive 
strength. However, the KNN performed better than that 
of the DT though both classifiers exceed the accepted 
threshold of 70%. With regards to both algorithms, more 
than 70% of the instances of the test data were detected 
by the respective algorithms for both the diabetic and 
non-diabetic data. Of the detected test data, more than 
70% were accurately predicted by the KNN and DT 

Fig. 4  Distribution of study features across T2DM and non-T2DM subjects. Note that HbA1c is glycated haemoglobin, TC is Total Cholesterol; BMI is 
body mass index; FBS is Fasting blood sugar; DBP is Diastolic Blood Pressure; TG is Triglycerides; SBP is Systolic Blood Pressure; HDL-c is high-density 
lipoprotein cholesterol; LDL-c is density lipoprotein cholesterol 

Fig. 5  Principal component analysis (PCA) biplot illustrating the relationships among study features and the clustering patterns in subjects with 
T2DM and no T2DM based on orthogonal linear combinations of the features. Glycated Haemoglobin (HbA1c), Total cholesterol (TC); Body Mass 
Index (BMI); Fasting Blood Sugar (FBS); Diastolic blood pressure (DBP); Triglycerides (TG); Systolic Blood Pressure (SBP); High Density Lipoprotein 
cholesterol (HDL-c); Density Lipoprotein cholesterol (LDL-c)
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classifiers. NB outperformed the other algorithms in 
terms of ROC, sensitivity, specificity, accuracy and Kappa 
(Fig. 6).

Table 3 contains both the Confusion matrix and ROC 
curves of the various ML algorithms for the test set. As 
earlier described, ROC curve provides the overall assess-
ment of the predictive models. The figures at the right 
of Table 3 show ROC curves of the four classifiers (NB, 
KNN, SVM, DT). The top left corner of each of the 
plot is the “ideal” point—a false positive rate of zero (0), 
and a true positive rate of one (1). However, it is highly 
unrealistic to obtain the extreme Area Under Curve 
(AUC) score of exactly 0 or 1. Nevertheless, in an ideal 

situation, AUC of 0.90–1.0 = excellent, 0.80–0.90 = good, 
0.70–0.80 = fair, 0.60–0.70 = poor and 0.50–0.60 = fail 
(Kleinbaum & Klein, 2010). The AUC measures discrimi-
nation and the models classify the cases and controls. 
Therefore, the larger the area bounded to the reference 
line, the better in terms of the predictive model. From 
Table  3, the AUC of all the classifiers was beyond 0.80 
(80%) but less than 0.90 (90%) indicating “good” predic-
tive models. While recognising the good performance of 
the ROC curve, some of the classifiers performed better 
than others. NB has the best performance (AUC = 0.87) 
followed by SVM (AUC = 0.84), KNN (AUC = 0.85) and 
DT (AUC = 0.81). This performance shows how well the 
algorithms discriminate on the dataset.

Feature importance
The predictor attributes of the T2DM dataset used in this 
study were ranked according to their predictive influ-
ence on the target variable (T2DM status). Our feature 
extraction indicates the relevance of all the features for 
predicting T2DM. Hence, all the attributes were used for 
building and testing the predictive models with the vari-
ous ML algorithms. Although the various attributes were 
relevant for building the predictive model, the order of 
importance of each of the feature attributes was com-
puted and ranked according to their strength of influ-
ence on predicting T2DM. As indicated in Fig.  7, the 
best three feature attributes, in order of importance, are 
HbA1c, TC and BMI (rankings were uniform across four 
ML algorithms). The highly ranked feature attributes are 
very important when detecting T2DM and these should 
be prioritized accordingly. While we recognise that all 
the feature attributes are essential for detecting T2DM, 

Table 2  Performance of the classifiers for cases and control

Where NB-Naïve-Bayes, SVM -support vector machine, KNN- K-nearest neighbor and 
DT- Decision tree

With all Features

Classifiers Measures T2DM Non-T2DM Weighted 
avg

Accuracy

NB Precision 0.93 0.81 0.87 87%
Recall 0.82 0.93 0.87

F1- score 0.87 0.86 0.87

SVM Precision 0.97 0.75 0.97 84%
Recall 0.73 0.98 0.73

F1- score 0.84 0.85 0.84

KNN Precision 0.90 0.77 0.84

Recall 0.78 0.90 0.84 83%
F1- score 0.84 0.83 0.83

DT Precision 0.80 0.78 0.79

Recall 0.82 0.76 0.79 81%
F1- score 0.81 0.77 0.79

Fig. 6  Comparative analysis of the four machine learning algorithms across sensitivity analysis statistics for the training set. ROC = Receiver Operating 
Curve, Sens = Sensitivity score and Spec = Specificity score 
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Table 3  Confusion Matrix and ROC curve for each of the classifiers
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this current study has found Age, HDL-c and LDL-c as 
the least of the feature attributes for predicting T2DM.

The ML model was developed to consider Age as one 
of the attributes. Age is known in literature to affect the 
other attributes of T2DM. In this study, the ML algo-
rithms inherently aggregated and extracted the weighted 
the age attribute for the classifier to learn to build a model 
towards prediction. Therefore, variations in the Age of 
the patients, in respect of the other attributes, influence 
the predictive strength of the model towards predict-
ing the test data. For instance, if the Age of patients are 
highly tilted above 50  years, the indicators of the other 
attributes are affected, and in effect, influence the pre-
dictive model. Likewise, when the Ages are tilted below 
40 years the other attributes will vary and the predictive 
model affected.

Discussion
The emergence of ML techniques has fuelled interest in 
the predictive modelling of cardiometabolic diseases [43, 
44]. In this Ghanaian cohort study, we have demonstrated 
that ML algorithms can accurately predict T2DM based 
on laboratory results and anthropometric data. In doing 
so, four ML classification algorithms NB, KNN, SVM and 
DT were compared. The predictive performance was gen-
erally good for all algorithms. In the analysis, it was found 
that NB was the best performing classifier with AROC of 
87.20%, and also in terms of sensitivity, specificity, accu-
racy and kappa (Fig. 6). This finding agrees with that of 
Sisodia and Sisodia (2018) who reported NB (AROC of 

76.30%) as the best predictor of diabetes in pregnant 
women [43]. Sneha and Gangil, (2019) also showed that 
NB had the best accuracy when compared with DT [46].

The study identified SVM as the second-best performer 
and having a good discriminatory power. This agrees 
with previous research. For example, reporting an AUC 
of 83.47%, Yu et al., [35] highlighted that SVM is efficient, 
can predict diabetes and outperforms logistic regression 
in population health surveys. The reason for the good 
discriminatory power of SVM is suggested to be due to 
the large margin between hyperplanes that allows for the 
separation of classes in three dimensional vector space 
[43]. However, one of the limitations of SVM in terms of 
its performance on data is the size of the data. SVM has 
been found in literature to perform extremely well when 
the dataset is large. Although the performance in this 
study was above the accepted threshold of the 70%, the 
size of the dataset could have affected the performance.

With regards to KNN classifier, the accuracy was 81.0% 
and AROC of 83.9%. While this result is significant 
(> 70%), it is possible the result could have been affected 
by bias variance trade off [54]. Despite the fact that KNN 
is sensitive to the quality of the data, it is also sensitive 
to the scale of the data and irrelevant features. Hence, 
features that exhibited weak predictive strength could 
have influenced the performance of KNN. The DT, which 
performed significantly but poorly among the classifi-
ers used in the study, is a probabilistic algorithm which 
works well when the attributes are extremely unique. The 
poor performance among the other classifiers may have 

Fig. 7  Feature importance across four machine learning algorithms. Glycated haemoglobin (HbA1c), Total cholesterol (Chol); Body Mass Index 
(BMI); Fasting Blood Sugar (FBS); Diastolic Blood Pressure (DBP); Triglycerides (TG); Systolic Blood Pressure (SBP); High Density Lipoprotein cholesterol 
(HDL-c); Density Lipoprotein cholesterol (LDL-c)
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occurred as a result of its sensitivity to small perturba-
tions in the data.

With ML methods exhibiting high Precision, Recall, 
F1-score, Weighted average and Accuracy (Table  3), 
the study has demonstrated the ability of the ML tech-
niques to correctly predict T2DM. For example, NB 
could identify the presence of T2DM in 82 patients out 
of 100 T2DM patients, SVM could identify 73 out of 
100; KNN could identify 78 out of 100 and DT could 
identify 82 out of 100 T2DM patients. This is especially 
important as a lower recall rates can lead to misdiagno-
sis of T2DM.

The phenotypic expression of T2DM is due to a con-
tinuum of risk factors. The present study identified 9 
variables including blood pressure, FBS, TC, TRG, BMI, 
HDL-c and LDL-c as predictors of T2DM. Particularly, 
with regards to the order of importance, we identified 
HbA1c, TC and BMI as the top three primary predic-
tors of T2DM. These findings are not unexpected but 
validate those of previous studies [34, 42, 45]. Hitherto, 
the measurement of FBS was considered the surest way 
to determining prediabetes and diabetes. However, 
due to daily fluctuations of glucose levels, there was a 
need for alternative biomarkers (55). In the course of 
research, it was known that sugars are pinned to resi-
dues of globin chains and forms 1-deoxy-1-N-valyl-
fructose after an Amadori rearrangement [55]. Later, 
this product became known as glycated haemoglobin 
(HbA1c). While the level of FBS is still the basis for the 
diagnosis of prediabetes and diabetes in most laborato-
ries, this research has indicated that HbA1c is sensitive 
and more reliable for diagnosing diabetes than FBS [7, 
56]. Further, HbA1c has leverage over FBS by being sta-
ble and can detect plasma glucose levels in the previous 
3 months. From.

Figure  5, our results confirm that of previous stud-
ies that HbA1c is superior to FBS in T2DM diagnosis. 
Although some researchers prefer other obesity meas-
ures to BMI [57–60], BMI is widely used as an indicator 
of excess body fat and a risk factor for  cardiometabolic 
disease [61, 62]. The use of BMI in the present study 
instead of the other fat indicators such as waist circum-
ference, abdominal obesity and visceral body fat is justifi-
able in the light of a previous study (63). Based on 1288 
subjects, Bouchard, (2007) revealed the bidirectional 
relationship between BMI and other fat measures. Spe-
cifically, the study showed that BMI strongly correlated 
with excess fat mass (r = 0.94), waist or abdominal obe-
sity (r = 0.93), and abdominal visceral fat (r = 0.72) [63]. 
These results are comparable to the findings of several 
previous studies [31, 35, 64]. For example, using a neu-
ral network model, Akella and Kaushik (2020) identified 

resting blood pressure, serum cholesterol and blood glu-
cose as part of the top 10 variables of importance in car-
diovascular disease prediction [65].

LDL-c and HDL-c are important molecules that are 
dysregulated or modified in  T2DM. In T2DM, there is 
a decline of HDL-c due to the formation of TRG rich 
HDL-c. TRG-HDL-c is a substrate for hepatic lipases that 
catalyses the breakdown of HDL-c [66]. Conversely, there 
is a reduction in the catabolism of LDL-c in T2DM lead-
ing to increased levels of LDL-c. This decrease has been 
attributed to a decline in the expression of apolipoprotein 
B and apolipoprotein E receptors as well as a decreased 
affinity of LDL-c [67].

Dinh et  al. [39] have revealed that age is a key risk 
factor for cardiovascular events and diabetes [68] 
because ageing is linked to physical inactivity and ulti-
mately, T2DM. However, in the present study, our fea-
ture selection technique revealed age to be one of the 
risk factors in T2DM albeit among the least predictors 
of T2DM. This is to imply that ageing is a determining 
attribute for T2DM detection. However, other attrib-
utes such as HbA1c, TC and BMI ought to be consid-
ered before Age when diagnosing for T2DM. It is worth 
noting that the aged people may physically exhibite 
symptoms of T2DM but may not necessarily be dia-
betic. This is may be the reason whyHbA1c, TC and 
BMI are the most important attributes for diagnosing 
T2DM. This result also agrees with those reported in 
the literature. Comparing multiple variables including 
invasive laboratory data and non-laboratory data (non-
invasive), Dinh et al., [39] documented that age was the 
fifth predictor of diabetes behind LDL-c, TRG, blood 
urea nitrogen, sodium and blood osmolality. However, 
in the absence of laboratory variables, their results 
showed that age was the second most important feature 
for predicting diabetes.

It should be clear by now that ML can adequately 
predict T2DM in a Ghanaian population. However, 
some limitations need to be mentioned. Firstly, the 
sample size of the participants was small and the pre-
diction may be over/underestimated. However, this 
does not invalidate our results since Kuhn and Max 
[36] has stated that large sample sizes, though ben-
eficial, increase computational burden and can impact 
the results. Secondly, it is important to note that other 
potential risk factors including family history, physi-
cal activity exist, but they were not considered in this 
study. It is expected that the inclusion of these will 
further enhance the predictive model. Thirdly, the 
impact of antidiabetic medications should not be over-
looked. Some of the medications being used to control 
T2DM in this population include glucose-lowering (e.g. 
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biguanides, thiazolidinediones, sulfonylureas); lipid-
lowering (statins) and antihypertensives (e.g. angio-
tensin II receptor blockers, calcium channel blockers) 
[29]. Thus, the interpretation of the results should be 
viewed in light of medication use. Going forward, we 
will explore the potentiality of ML methods for discov-
ering other biomarkers of T2DM.

The study seeks to influence policy and practice in 
the various health facilities in Ghana. The present 
study recommends clinicians to first test HbA1c, 
TC and BMI for T2DM before any other parameter 
could be considered. This study underscores the fact 
that some T2DM risk factors are more important, in 
terms of their predictive strength, than the other risk 
factors. Hence, our study attempts to reduce the cost 
of diagnosing T2DM. Indeed, HbA1c and FBS were 
the strong biomarkers for predicting diabetes in the 
Ghanaian population. The data for the current study 
comprised both undiagnosed (including at-risk) and 
diagnosed diabetes individuals. Identifying individu-
als with undiagnosed diabetes has been a challenge but 
our results reinforce the relevance of HbA1c or FBS 
for early detection of diabetes or prediabetes. Once 
detected, such individuals can be targeted for tailored 
treatments that will delay them from developing the 
disease. Based on the analysed data, these attributes 
are enough to show diabetes patients.

Conclusion
Using multiple variables as substrates, the study has 
shown that ML can generate accurate predictions of 
T2DM and provide potentially meaningful information. 
We identified NB as the best algorithm in predicat-
ing T2DM when compared with KNN, DT and SVM. 
When employed, these algorithms can allow the early 
detection of T2DM, anticipate future events and in 
turn, stimulate a timely intervention. It is hoped that 
the findings of this study will guide the selection of 
appropriate ML algorithm for the prediction of T2DM 
and help health professionals in Ghana to make well-
informed and better decisions.
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