REVIEW

Open Access

Promises of eukaryotic ribonucleases for cancer treatment: a systematic review

Yesuf Adem Siraj^{1,2*}

Abstract

Background: Following an increasing interest in exploration of anticancer chemotherapeutic agents, ribonucleases are currently under investigations for alternative anticancer chemotherapy.

Objective: The current review scrutinizes information on the potential capability of eukaryotic ribonucleases for cancer treatment.

Methods: Predefined searching terms were applied to PubMed, Scopus, eLibrary databases and other search engines such as Google Scholar and bioRvix preprints. Twenty four research articles on eukaryotic ribonuclease were included in the review. Qualitative and quantitative information of these studies were extracted, analyzed and explained in text, tables and figures.

Results: Majority of eukaryotic ribonucleases (46%, 11/24) included in the review were extracted from various species of frogs, 21% (5/24) were from bovine sources and others were from human bodies, edible mushrooms, fungal and plant species. Molecular characteristics of eukaryotic ribonucleases were illustrated in tables and figures. According to the reports, ranpirnase with a trademark of Onconase[®] is the sole ribonuclease granted with an orphan and fast-track drug status by FDA, USA. Most other eukaryotic ribonucleases are undergoing various preclinical stages of research for their potential anticancer effect. Hence, the mean of half – maximal inhibitory concentrations (IC_{50}) of eukaryotic ribonucleases of several research outcomes showed their selective cytotoxicity towards cancerous cells. In some reports, pre-tumor-xenografted animals treated with ribonucleases also demonstrated diminished tumor volume, lower tumor metastasis and increased survival rates. In addition, overall safety and toxicity parameters were also indicated as tolerable by the experimental hosts. However, a single study indicated degeneration of spermatogenic epithelia in wheat leave RNase treated animals.

Conclusions: Though several clinical trials on eukaryotic ribonucleases are expected, existing results from in vitro and in vivo preclinical studies showed promising alternative chemotherapy to treat cancer diseases. Hence, further human safety and efficacy studies are still necessary to explore well established applications of eukaryotic ribonucleases in clinical medicine.

Keywords: Anticancer, Metastasis, Onconase®, RNase, Secretary Ribonucleases

Introduction

The current updates of Global Cancer Statistics of GLO-BOCAN estimated 19.3 million new cancer cases and about 10.0 million new cancer deaths occurred in 2020 [1]. The global cancer burden is expected to be 28.4 million cases in 2040 which is a 47% rise from 2020. Despite the efforts undertaken to reduce the risk of cancer, it

*Correspondence: yesufadems@yahoo.com; Yesuf.Siraj@bdu.edu.et ¹ Department of Medical Laboratory Sciences, School of Health Sciences,

College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia Full list of author information is available at the end of the article

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

is the most challenging disorder of the current medicine particularly in relation to the efficacy of existing chemotherapeutics.

Ribonucleases (RNases) are currently under consideration alternative to chemotherapeutic agents for cancer treatment. RNases are obtained from different origins; eukaryotic or prokaryotic organisms. Eukaryotic sources of ribonucleases in the research pipeline includes ranpirnase (Onconase[®]) from oocytes of northern leopard frog *Rana pipiens*, amphinase and RC-RNase from oocytes of other frog species, bovine seminal ribonuclease (BS-RNase) from bovine seminal vesicles, RNase 3 (ECP) from human blood cells, wheat leaf neutral (WLN) RNase from cereal plants and other mammalian or plant ribonucleases [2].

Most of ribonucleases extracted from eukaryotic organisms showed promising anticancer activities at preclinical studies. Cancer cell lines and tumor-induced laboratory animals were employed to characterize the antitumor efficacy and toxicity of eukaryotic ribonucle-ases. However, only one of them, Ranpirnase, is granted an orphan designation status by FDA on 2007 for the treatment of unresectable malignant mesothelioma (MMe) [3]. Ranpirnase, with a trade name of Onconase[®], is the first ribonuclease anticancer chemotherapy introduced in to the market.

Hence, although only a single ribonuclease from *Rana pipiens* passed in to clinical phase studies, a number of eukaryotic ribonucleases from the same sources (*Rana* frogs) and other eukaryotic organisms including fungus, edible mushrooms, crops and plants are under investigation for chemotherapeutic potential of malignancies [4–8]. However, antiproliferative, anticancer, antimetastais and other major characteristics of eukaryotic ribonucleases are not well elucidated yet. Therefore, the current review was aimed at retrieving, analyzing and summarizing existing information of anticancer efficacy of eukaryotic ribonucleases. This review shows a picture of collective antitumor potential and safety of eukaryotic ribonucleases.

Methods

Search strategy and screening process

After a preliminary literature search of the research question based on pre-defined population, intervention, comparison and outcomes (PICOs), concepts, keywords and MeSH terms were extracted for further application of searching strategies. Three main concepts and their synonyms were identified as follows. Concept 1: cancer (synonyms: tumor and malignancy), concept 2: eukaryotic ribonuclease (synonyms: RNase, mammalian RNase, plant RNase and fungal RNase), concept 3: cancer

outcomes (survival time, time for progression, tumor volume or weight reduction, antiproliferation, anticancer, antitumor, antimetastasis, apoptosis and toxicities) were formulated. All search terms of each concept of the research question were applied to search engines of PubMed, Scopus, eLibrary (Russian scientific electronic library: http://elibrary.ru) databases and other web-based sources including Google Scholar and bioRvix preprints. Boolean operators were used during concept combination search.

A total of 1044 published articles and preprint were retrieved between January 01, 2021 and February 11, 2021 (ended at 5:32:39am) from all search engines mentioned above. All these articles were exported to EndNote X9 version 19 reference management software (Clarivate Analytics[™]). Sixty nine duplicated articles (based on similar title, authors, journal name, volume and number/ issue of articles) were removed and 955 articles were then subjected to primary selection according to a pre-stated inclusion and exclusion criteria. Title and abstract of each article were examined for encompassing the antitumor, anticancer and antineoplastic properties of eukaryotic ribonucleases and 24 original articles and pre-print of eukaryotic RNase researches were included for data extraction. Only open accessed articles in English and Russian language were included. Articles which focused on antiviral / antiparasitic / antibacterial RNases, bacterial ribonucleases, RNases for diagnostic or etiologic functions or as molecular dicer, antibody or molecule conjugated RNase, antitumor proteins such as RNase inhibitors (RI), clinical trials reported in abstract form only and articles with limited information on eukaryotic RNase were excluded.

Data extraction and management

Basic information of experimental intervention, eukaryotic RNases, including RNase name, super family, source, PICOs, molecular weight (Da), mean of half-maximal inhibitory concentration (IC₅₀), mean of total cell number at time t-interval of treatment, mean cell viability / vitality, mean of tumor volume, type of experimental model, RNase concentration or injection dose, 1-year or 2-years survival rate and time to progression of clinical trial outcomes, tissue or organ toxicities, and safety related outcomes were extracted from text, tables and graphs of included articles.

Retrieving sequences and bioinformatics analysis

Protein sequences of known anticancer eukaryotic ribonucleases were retrieved from UniProtKB consortium. UniProtKB, universal protein knowledge base, is a large resource of protein sequences and their detailed annotation. It is a joined data from Swiss-prot, TrEMBL and PIR in which more than half a million protein sequences have been experimentally reviewed while others remain on unreview status [9]. Entry, protein and gene names, accession number, length of protein sequence, active site positions, annotation score and source of organism of cytotoxic eukaryotic RNases included in this review were searched with a query syntax of "antitumor AND RNase" and stored in a UniProtKB basket for further analysis. Homologous sequences of eukaryotic ribonucleases were created and subjected to multiple sequence alignment. The FASTA format of 14 protein sequences of these eukaryotic ribonucleases were entered to robust phylogenetic analysis for the non-specialists (www.pylog eny.fr) with TreeDyn 198.3 program of PHYLIP package [10] and their evolutionary relationship was described. PyMOL[™] 2.4.1 (Incentive Product© Schrodinger, LLC) software was also employed to show the active sites amino acid residues and three dimensional (3D) structures of some ribonucleases.

Results

Description of studies included in the review

Twenty-four original published primary studies were eligible according to the predetermined inclusion criteria (as described in Methods). All studies, included in this review, were mainly focused on potential antitumor applications of eukaryotic ribonucleases. Among these included RNase studies, 46% (11/24) were RNases isolated from various species of frogs, genus Rana in particular, 21% (5/24) were from bovine sources, 12.5% were from human bodies and others were from edible mushrooms or fungal agents or plant species (Table 1). Majority of antitumor RNases included in this review belongs to pancreatic ribonucleases (RNase A) family. Only two clinical trial RNase studies were included while other RNase studies were limited to preclinical stages. A single study involved only apparently healthy animals in which kidney toxicity (nephrotoxicity) was solely investigated.

Molecular characteristics of eukaryotic ribonucleases

A total of twenty protein sequence entries of eukaryotic ribonucleases variants with anticancer characteristics were retrieved from UniProt knowledge base (Uni-ProtKB) (https://www.uniprot.org/). Among included eukaryotic RNases, the longest protein sequence was observed on WLN-RNase (1392 amino acid residues) which is originated from wheat leave while other eukaryotic RNases possess a range of 104 to 380 amino acid sequences. More than 50% of protein sequences of query syntax were well annotated with annotation scores of 4 and 5 (Table 2).

All entries of protein sequences of antitumor RNases were then subjected to multiple sequence alignment using an in-built Clustal Omega program of UniProtKB. However, phylogenetic tree analysis of the protein sequences showed six outliers. Hence, after removal of these outliers, the remaining protein sequences were realigned. These protein sequences were further highlighted using annotation and amino acid properties.

Based on the Clustal Omega [UniProtKB] multiple sequence alignment of query sequences, 14 identical sequence positions (indicated by *) with 8.434% identity were observed (Fig. 1). In addition, 7 sequence positions of selected eukaryotic RNases (indicated by:) showed conservation with strong similarity score of > 0.5 in Gonnet PAM 250 matrix while 3 sequence positions (indicated by.) showed a conservation between groups of weakly similarities scoring < 0.5. Majority of active sites of these ribonucleases are laying on identical amino acid sequence positions. The hydrophobic properties of protein sequences of selected antitumor ribonuclease enzymes have markedly observed in the N-terminal segments of the query sequences (Fig. 1).

Phylogenetic tree of 14 protein sequences of variants of eukaryotic ribonucleas was then developed using an online bioinformatics tool as indicated in the Methods part. Figure 2 is a phylogram that shows the evolutionary relationship of various monophyletic groups of ribonucleases. The protein sequences of eukaryotic RNases of genus Lithobates frogs showed similar recent common ancestor (deep and light purple colored) while protein sequences of RNASO_LITCT from oocytes of Lithobates catesbeianus frog (light purple colored) is different from both monophyletic RNase groups of the same frog species (Lithobates pipiens). Angiogenin ribonucleases of Homo sapiens and bovine Bos taurus are from the most recent common ancestor. Similarly, protein sequences of pancreatic RNases of bovine and humans, and seminal RNase of bovine Bos taurus also share similar common ancestor. However, the protein sequences of eosinophil cationic protein (ECP) RNase of Homo sapiens is completely different from other clades of phylogram and it doesn't show any significant substitution protein sequences from its ancestor.

In addition, the 3D structures of some eukaryotic ribonucleases were fetched from protein data bank (PDB, EMBL-EBI) using a PyMOL[™] 2.4.1 (Incentive Product[©] Schrodinger, LLC) software. Active site amino acid residues of each eukaryotic ribonuclease, their polar interactions and active water molecules were indicated within 5-Angstroms resolution of pre-existed ligands (Fig. 3). Overall similarities of active sites of eukaryotic ribonucleases observed in their 3D structures are also well dictated by the existence of identical positions of active sites of their multiple sequence alignment.

>
€_
i S
Ξ.
Ъ Д
t
<u> </u>
8
ğ
5
.Ĕ
SS
Ť
Ë
a.
of
S
as(
<u> </u>
5
č
8
÷
<u>.u</u>
ot
\geq
Кa
D.
fe
0
S
Zİ
÷
SC
é
5
-

٩	Author, YYYY	RNase Name	RNase Source	RNase Superfamily	Population, Interven	tion, Comparator and (Outcomes (PICOs)		Ref
					Cancer cells / patients	Eukaryotic RNase	Placebo / Other	Apoptosis / Improvement	
-	Laccetti et al., 1992	BS-RNase	Bovine seminal vesicles	Pancreatic-type RNase	Cancer cell lines and mice	BS-RNase	Normal/untreated cells / mice	Growth inhibition, anticancer	[11]
7	Laccetti et al., 1994	BS-RNase	Bovine seminal vesicles	Pancreatic-type RNase	Cancer cell lines & mice	BS-RNase	Normal cells and mice	Antitumor and anti- metastatic	[12]
ŝ	Pouckova et al, 1998	BS RNase	Bull seminal vesicle fluid	Pancreatic-type RNase	Athymic nude mice	BS RNase	Untreated nude mice	Antitumor action	[13]
4	Di Liddo et al., 2010	Bovine milk RNase-4	Bovine milk protein	RNase-4	Cancer cell lines	Bovine milk RNase-4	Untreated cells and RNase-A	Cytotoxicity (growth inhibitory effect)	[14]
S	Patutina et al, 2011	RNase A	Bovine pancreas	RNase A	murine models	RNase A	Saline treated mice	Decreased metastasis	[15]
9	Darzynkiewicz et al., 1988	Pannon (P-30 Protien)	Vertebrate tissue extract	Pancreatic ribonucle- ase A	Cancer cell lines	Pannon (P-30 Protien)	Untreated cells	Apoptosis	[16]
~	Vasandani et al., 1999	Onconase (Onc [®])	Oocytes of Leopard frog (<i>Rana</i> pipiens)	pancreatic ribonucle- ase A (RNase A)	Apparently healthy mice	Onconase	Unexposed appar- ently healthy mice	Nephrotoxicity	[17]
œ	Lee et al., 2000	Onconase (Onc [®])	Amphibian oocytes	Pancreatic ribonucle- ase A	Cancer cell lines and mice	Onconase (Onc [®])	Untreated cells / mice	Antitumor efficacy and lower TIFP	[18]
6	Vogelzang et al.,2001	Ranpirnase (Onc [®])	Oocytes of Leopard frog (Ran pipiens)	pancreatic ribonucle- ase A (RNase A)	Patients With metas- tasis	Ranpirnase (Onc [®])	T	- Survival, - progression time - Toxicities	[19]
10	Magnitsky et al., 2006	Ranpirnase (Onc [®])	Eggs & early embryo of Leopard frog <i>R.</i> <i>pipiens</i>	Pancreatic ribonucle- ase A	Cancer cells and nude mice	Ranpirnase (Onc [®])	Untreated cells / mice	Apotosis	[20]
7	Lee et al., 2007	Ranpirnase (Onc [®])	Oocytes of Northern Leopard <i>Rana pipiens</i>	Pancreatic ribonucle- ase A	Cancer cells and nude mice	Ranpirnase (Onc [®])	Normal/untreated cells / mice	Antitumor efficacy	[21]
12	Mikulski et al., 2002	Ranpirnase (Onc [®])	Eggs and early embryos of Leopard frog <i>R. pipiens</i>	Pancreatic ribonucle- ase A (RNase A)	Patients with metas- tasis	Ranpirnase (Onc [®])	ī	- Survival - Tumor responses - progression Time	[22]
13	Smolewski et al, 2014	Onconase (Onc [®]) and r-amphinase	Oocytes of Leopard frog (<i>Rana pipiens</i>)	pancreatic ribonucle- ase A (RNase A)	peripheral blood mononuclear/ Can- cer cells	Onconase and r-amphinase	Untreated tumor and healthy lymphocytic cells	Cytotoxicity and apoptosis	[23]
14	Ardelt et al., 2007	Amphinase	Oocytes of Northern Leopard (<i>R. pipiens)</i>	Pancreatic ribonucle- ase A	Cancer cell lines	Amph Variants	Alkylated Amph-2	Apoptosis	[24]
Ŷ	Author, YYYY	RNase Name	RNase Source	RNase Superfamily	Population, Interven	tion, Comparator and (Outcomes (PICOs)		Ref
					Cancer cells / patients	Eukaryotic RNase	Placebo / Other	Apoptosis / Improvement	
15	Liao et al, 2000	RC-RNase1, 2,3,4,5,6, L1	Bull frog oocyst (<i>R.</i> catesbeiana)	Pancreatic ribonucle- ase A	Cancer cell lines	RC-RNase-1, 2,3,4,5,6, L1	RNase A treated cells	Antitumor efficacy	[25]
16	Wang et al., 2015	Rdchonc RNase	Rana chensinensis changbaishanensis	pancreatic ribonucle- ase A (RNase A)	Cancer cell lines	Rdchonc RNase	Untreated control cells	Antiproliferative, apoptosis and anti- invasion	[26]

\sim
ed
2
÷
Ē
S
9
-
e
Q
Ta

٩	Author, YYYY	RNase Name	RNase Source	RNase Superfamily	Population, Interven	tion, Comparator and	Outcomes (PICOs)		Ref
						Eukaryotic RNase	Placebo / Other	Apoptosis / Improvement	
17	Griffiths et al., 1997	hCG 18 K RNase	Human urinary chori- onic gonadotropin	RNase A	Cancer cell lines	hCG 18 K RNase	Untreated cells	Antineoplastic Anti- proliferative	[27]
18	Maeda et al., 2002	RNase 3 (ECP)	Large granules of mature peripheral blood eosinophils	pancreatic type RNase	Cancer cell lines	RNase 3 (ECP)	Untreated cells	Growth inhibition	[28]
19	Castro et al., 2011	PE5	Human pancreatic RNase	HP RNase	Cancer cell lines	PES	Untreated cells	Apoptosis	[29]
20	Zhang et al., 2010	RNLs30 RNase	Fresh fruiting bodies of the edible mush- room Lyophyllum shimeiji	Mushroom RNase family	Cancer cell lines	Lyophyllum shimeiji RNase	Untreated control cells	Antiproliferative and antitumor	[30]
21	Joceph et al., 2020	Lp16-PSP (Lat- cripin-16)	Mushroom <i>Lentinula</i> edodes C91-3	YjgF/YER057c/UK114	Cancer cell lines	Lp16-PSP (Lat- cripin-16)	Normal cells	Anticancer and antiproliferative	[31]
52	Kumar et al., 2013	<i>A. niger</i> RNase (ACT- BIND)	Aspergillus niger		Cancer cell lines	A. <i>niger</i> RNase	Normal cells	Anticancer, anti- invasiveness	[32]
23	Skvor et al., 2006	Wheat leaf RNase (WLN-RNase)	Wheat leaf	Plant ribonuclease	Cancer cells and athymic nude mice	Wheat leaf RNase (WLN-RNase)	RNase A, BS-RNase, Onc treated cells / PBS treated mice	Antiproliferative and antitumor	[33]
24	Fang et al, 2012	MC2 RNase	Dietary bitter gourd (Momordica char- antia)	MC2 RNase	Cancer cells and nude mice	MC2 RNase	Untreated cells and nude mice	Antiproliferation, tumor growth	[34]

Onc[®] Onconase[®], WLN Wheat leaf neutral, ECP Eosinophilic cationic protein, hCG Human urinary chorionic gonadotropin

No	Entry name	Protein names	Accession No	Gene names	Length	Active site position	2	Annotation score (1–5)	Organism
						Proton Acceptor	Proton Donor		
1	RNP30_LITPI	P-30 Protein (Onconase)	EC 3.1.27	-	104			4	<i>Lithobates pipiens</i> (Northern leopard frog) (<i>Rana pipiens</i>)
2	Q8UVX5_LITPI	Onconase variant rpr	-	rpr	127	-	-	-	<i>Lithobates pipiens</i> (Northern leopard frog) (<i>Rana pipiens</i>)
3	Q9I8V8_LITPI	Onconase variant rapLR1	-	-	127	-	-	-	Lithobates pipiens (Northern leopard frog) (<i>Rana pipiens</i>)
4	RNASO_LITCT	Oocytes ribonu- clease (RC-RNase) (Sialic acid-bind- ing lectin)	EC 3.1.27	RCR	133	32	125	5	Lithobates cates- beianus (American bull frog) (Rana catesbeiana)
5	AMPS1_LITPI	Amphinase-1	EC 3.1.27	-	114	15	107	4	<i>Lithobates pipiens</i> (Northern leopard frog) (<i>Rana pipiens</i>)
6	AMPS2_LITPI	Amphinase-2	EC 3.1.27	-	114	15	107	4	Lithobates pipiens (Northern leopard frog) (Rana pipiens)
7	AMPS3_LITPI	Amphinase-3	EC 3.1.27	-	114	15	107	4	<i>Lithobates pipiens</i> (Northern leopard frog) (<i>Rana pipiens</i>)
8	AMPS4_LITPI	Amphinase-4	EC 3.1.27	-	114	15	107	4	<i>Lithobates pipiens</i> (Northern leopard frog) (<i>Rana pipiens</i>)
9	RNAS1_BOVIN	Ribonuclease pan- creatic (RNase A)	EC 4.6.1.18	RNASE1 RNS1	150	38	145	5	Bos taurus (Bovine)
10	RNS_BOVIN	Seminal ribonu- clease (S-RNase)	EC 4.6.1.18	SRN	150	38	145	5	Bos taurus (Bovine)
11	ANG1_BOVIN	Angiogenin-1	EC 3.1.27	ANG1 ANG	148	37	139	5	Bos taurus (Bovine)
12	ANGI_HUMAN	Angiogenin (RNase 5)	EC 3.1.27	ANG RNASE5	147	37	138	5	<i>Homo sapiens</i> (Human)
13	RNAS1_HUMAN	Ribonuclease pancreatic (HP- RNase)	EC 4.6.1.18	RNASE1 RIB1 RNS1	156	40	147	5	<i>Homo sapiens</i> (Human)
14	ECP_HUMAN	Eosinophil cati- onic protein (ECP)	EC 3.1.27	RNASE3 ECP RNS3	160	42	155	5	<i>Homo sapiens</i> (Human)
15	Q6FHX6_HUMAN	Flap endonucle- ase 1 (FEN-1)	EC 3.1	FEN1 hCG_40848	380	-	-	4	<i>Homo sapiens</i> (Human)
16	RNMC_MOMCH	Ribonuclease MC (RNase MC)	EC 4.6.1.19	-	191	34	85	2	<i>Momordica char- antia</i> (Bitter gourd) (Balsam pear)
17	V5UTC6_LENED	Latcripin-16	Latcripin-16	-	131	-	-	1	Lentinula edodes (Shiitake mush- room) (Lentinus edodes)
18	F8WSJ0_LYOSH	Ribonuclease T(2) (Fragment)	EC 4.6.1.19	RNLs30	310	-	-	2	Lyophyllum shimeji (Hon-shimeji) (Tricholoma shimeji)
19	G3XZU9_ASPNA	Ribonuclease	EC 3.1.26.4	ASP- NIDRAFT_209236	352	-	-	2	Aspergillus niger (strain ATCC 1015)
20	A0A2U7NFE7_ WHEAT	Dicer-like protein (Fragment)	Dicer-like protein	dcl4	1392	-	-	2	<i>Triticum aestivum</i> (Wheat)

Table 2 UniProtKB search results of anticancer eukaryotic ribonucleases

4/14/2021		Align results [completed]	
P22069 RNP30 LITPI P61823 RNAS1 BOVIN P11916 RNAS0 LITCT P07998 RNAS1 HUMAN P00669 RNS BOVIN P12724 ECP-HUMAN P3050 P3050 ANGI HUMAN P10152 ANGI BOVIN P5075 AMPS4_LITPI P85075 P85075 AMPS4_LITPI P85072 Q8UVX5 Q8UVX5 LITPI Q8UVX5 Q8UVX5 LITPI Q918V8 Q918V8_LITPI LITPI	1 1 1 1 1 1 1 1 1 1 1 1	MALK-SLVLLS-LLVLVLLLVRVOPSLCKETAAAK FERC MDSSTSAASSNY NO MCAKSLLVFGILLGLSHSJSQDNAT OQK IINTPIIN NT MALEKSLVRLLLVFGILLGLSHSJSQNWAT OQK IINTPIN NT MALEKSLVRLLLVLILVLUVLVVGVSLCKESRAKK FRC MDSGNSPSSSSTY NO MALK-SLVVLP-LLVLVLLUVLVVGVGSLCKESRAKK FRC MDSGNSPSSSSTY NO MALK-SLVVLP-LLVLVLLURVOPSLCKESRAKK FRC MDSGNSPSSSSTY NO MALK-SLVVLP-LLVLVLLURVOPSLCKESRAKK FRC MDSGNSPSSSSTY NO MALK-SLVVLF-LUVLLLGLGUPPSLAQDNSRTHLITC YDAKP-OGRDDRY ES MYMGLGVLLVFVLGLGLTPPTLAQDNSRTHLITC YDAKP-OGRDDRY ES MYMGLGVLLVFVLGLGLTPPTLAQDNSRTHLITC YDAKP-OGRDDRY ES KPKEDKEMEK KTK IISQSVADFN NK 	21 54 56 52 28 52 28 28 28 28 44 44
P22069 RNP30_LITPI P61823 RNAS1_BOVIN P11916 RNAS0_LITCT P07998 RNAS1_HUMAN P00669 RNS BOVIN P12724 ECP_HUMAN P85074 AMP53 AMP54 LITPI P03950 ANGI HUMAN P10152 ANGI BOVIN P85075 AMP54_LITPI P85072 AMP51_LITPI Q80VX5 Q8UVX5_LITPI Q918V8 Q918V8_LITPI	22 55 44 57 53 29 29 29 29 45	I STNLFH KDKNTF YSRPEP KAI KGIIASKNVLTTSEFY SD N MKSRNL-TKDR KPVNT HESLAD QAV SQKNVACKNGQTNCYQSYSTS TD R I DNNIYIVGQQ KRVNT ISSATT KAI TGVINM-NVLTTSEFY SD N M RRRM-TQGR KPVNT HESLAD KAI SQKKVTKNGQGNCYQSKSTMR TD R M CCRKM-TQGK KPVNT HESLAD KAI SQKKVTKNGQGNCYQSKSTMR TD R A RAINN-YRMR KNQNT RTTFAN VN GNOSIROPHNRTINNCHRSRRVPILH D I NNPOFTPDQ KFINT HSNTGP KEI RRASGRVKSSTQO P IT K I RRRGL-TS-P KDINT HGNKRS KAI ENKNGPHRENLRISKSEQ TI K M KNRRL-TR-P KDRTH GJKND KAI ENKNGPHRENLRISKSEQ TI K I NDPOFTPDQ KPVNT HSNTGP KEI RRASGRVKSSTQO P IT N I NDPOFTPDQ KPVNT HSNTGP KEI RRASGRVKSSTQO P IT N I NDPOFTPDQ KVVT HSNTGP KEI RRATGRVNKSSTQO P IT N I NDPAYTPDQ KVVT HSNTGP KEI RRATGRVNKSSTQO P IT N I NDPAYTPDQ KVVT HSNTGP KEI RRATGRVNKSSTQO P IT N I NDPAYTPDQ KVVT HSTGP KEI RRATGRVNKSSTQO T IT K I STNLFH KDKYT YSRPEP KAI KGIIASKNVLTTSEY SD N	69 111 94 113 111 111 106 80 80 80 92 92
P22069 RNP30 LITPI P61823 RNAS1 BOVIN P11916 RNAS0 LITCT P07998 RNAS1 HUMAN P00669 RNS BOVIN P12724 ECF HUMAN P03950 ANGI HUMAN P1052 ANGI BOVIN P85075 AMPS3 LITPI P85075 AMPS4 LITPI P85072 AMPS1 LITPI Q8UVX5 Q8UVX5 LITPI Q918V8 Q918V8 LITPI	70 112 95 114 112 112 81 107 107 81 81 81 93 93	VTSRP KYKLKKSTNKFCVT ENQAPVFFVGVGSC ETGSSKYPN AYKTTQANKHIIVA EONFYVPVFDASV RTSITPRP PYSSRTETNYICYK ENQYPVFPAGIGRCP LTNGSRYPN AYKTQVBKHIIVA EOSFVP ETGSSKYPN AYKTQVBKHIIVA EOSFVP	104 150 145 145 147 144 147 148 114 114 114 114 127 127
Fig 1 Active site apportations ar	d amin	a acid properties of multiple sequence aligned protein sequences of oukarvetic ribenucleases. An	

Fig. 1 Active site annotations and amino acid properties of multiple sequence aligned protein sequences of eukaryotic ribonucleases. An asterisk (*) indicates positions which have a single and fully conserved residue, a colon (:) indicates conservation between groups of strongly similar properties—scoring > 0.5 in the Gonnet PAM 250 matrix, a period (.) indicates conservation between groups of weakly similar properties—scoring = <0.5 in the Gonnet PAM 250 matrix. Red color shaded – active sites of protein sequences, Gray color shaded – identical positions of protein sequence and Blue color shaded – hydrophobic positions of protein sequences

In vitro antiproliferative and antimetastasis activity of eukaryotic RNases

Rapid cell proliferation, loss of differentiation and adhesion, and progression of metastasis are some of the features of tumor cells growth [35]. On the other hand, eukaryotic ribonucleases exhibit antiproliferative effect on various types of tumor cell lines and these are now considered a novel class of cancer chemotherapeutic agents [36]. Approximate total cell counts of RNase treated and untreated cellular population were extracted from line graphs of original primary articles

and analyzed for tumor cell population in a specified period of incubation (Table 3).

Cell lines of human promyelocytic leukemia (HL-60), human monocytic leukemia (U-937), Jurkat T-cell leukemia, Fischer rat normal thyroid cells (FRTL-5), Fischer rat thyroid tumor cells (TK-6), TK-6 derived lung metastasis (MPTK-6) and drug resistant ovarian cancer cells (NCI/ADR-RES) were treated with increasing concentrations of different classes of RNases (Table 1). A bovine seminal RNase (BS-RNase) treated Fischer rat normal thyroid cells (FRTL-5) showed almost comparable cell population to its control [11] while other RNases such as amphinase [24], P-30 protein [16], PE5 [29] and

S/N	Author, YYYY	RNase	Experiment		Tota (× 10	l cell n D⁵ cells	umbei s/ml)	*	Cell Growth (Proliferation)
			Cell lines (Description)	Concentration	0 h	24 h	48 h	72 h	
1	Ardelt et al., 2007 [24]	Amphinase (Amph)	HL-60 (Human promyelo-	Control	2.0	4.0	10.0	22.0	\downarrow
			cytic leukemia)	Amph, 1 µg/ml	2.0	4.0	5.0	7.0	
			0-937 (Human monocytic leukemia)	Amph, 5 µg/ml	2.0	3.0	2.5	3.0	
			Jurkat cells (T-cell leuke- mia)	Amph,10 µg/ml	2.0	2.0	2.5	2.0	
2	Darzynkiewicz et al.,	P-30 protein (Pannon)	HL-60 (Human promyelo-	Control	2.0	4.5	8.0	17.0	\downarrow
	1988 [16]		cytic leukemia)	P-30, 10 µg/ml	2.0	3.0	3.5	5.5	
				P-30, 20 µg/ml	2.0	2.9	2.9	2.0	
3	Laccetti et al., 1992 [11]	BS-RNase	FRTL-5 (Fischer rat normal	Control	0.75	5.0	10	10.5	$\downarrow\uparrow$
			thyroid cells)	BS-RNase, 5 µg/ml	0.75	5.0	9.5	10.3	
				BS-RNase, 10 µg/ml	0.75	4.5	9.5	10.1	
				BS-RNase, 50 µg/ml	0.75	4.5	9.0	10.0	
			TK-6 (Fischer rat thyroid	Control	0.75	3.5	11.0	13.0	\downarrow
			tumor cells)	BS-RNase, 5 µg/ml	0.75	3.5	10.5	12.5	
				BS-RNase, 10 µg/ml	0.75	2.5	10.0	12.0	
				BS-RNase, 50 µg/ml	0.75	2.0	8.0	10.5	
			MPTK-6 (Fischer rat lung	Control	0.75	4.0	10.5	12.5	\downarrow
			metastasis of TK-6 cells)	BS-RNase, 5 µg/ml	0.75	2.5	7.5	9.0	
				BS-RNase, 10 µg/ml	0.75	2.0	5.0	8.0	
				BS-RNase, 50 µg/ml	0.75	1.5	3.0	6.0	
4	Castro et al., 2011 [29]	PE5	NCI/ADR-RES	Control	0.07	0.07	0.07	0.07	\downarrow
			(Drug resistant ovarian	ΡΕ5, 2 μΜ	0.07	0.06	0.06	0.05	
				ΡΕ5, 14 μΜ	0.07	0.06	0.05	0.03	
				ΡΕ5, 35 μΜ	0.07	0.06	0.04	0.01	
		Onconase (Onc [®])	NCI/ADR-RES	Control	0.07	0.07	0.06	0.06	\downarrow
			(Drug resistant ovarian	Onc, 2 µM	0.07	0.06	0.05	0.04	
				Onc, 5 µM	0.07	0.06	0.05	0.04	

Table 3 Total cell number of untreated and RNase treated cell lines over a certain period of incubation

*All values of total cell number are approximate value and extracted from each respective reference. proliferation. $\downarrow \uparrow$ balanced cell proliferation i.e no difference between treated and untreated groups

Onconase [29, 37, 38] treated cancerous cells showed decreased cell proliferation.

Cell growth inhibition of these ribonucleases was entirely dose and time dependent. As the incubation period and RNase doses increased, the cell growth inhibition increased while cell viability decreased. Brief exposure of BS-RNase to lung metastasis of MPTK-6 cells revealed higher antimetastasis activity while longer period of BS-RNase treatment of the same matastastic cells showed lower antimetastasis activity [11]. This also evidenced by very low cell viability (<1%) in brief exposure of murine Lewis lung metastasis cells to BS-RNase [12]. Regardless of the concentration of RNases, amphinase [24] and Lp16-PSP [31] RNases treated leukemic cell lines showed much lower viable cells compared to their matched controls (Table 4).

In vitro cytotoxicity of eukaryotic RNases

The half – maximal inhibitory concentration (IC₅₀) of eukaryotic RNases was employed to determine the selective antitumor activity of eukaryotic RNases of some articles included in this review (Fig. 4). A human pancreatic ribonuclease (PE5) treated cancerous and non-cancerous cells demonstrated typical selective cytotoxicity. The highest half – maximal inhibitory concentration of PE5 RNase was found on treated normal human fibroblast cells (N1) (IC₅₀=19.5±1.4 μ M) than cancerous cells including cervical cancer cells (IC50=8.2±0.6 μ M) and drug resistant ovarian cancer cells (IC₅₀=6.9±0.8 μ M) [29].

In contrary, the same study by Castro *et. al.*, (2011) compared the selective cytotoxicity of PE5 with Onconase, the most known ribonuclease drug [29]. It showed almost similar IC₅₀ value of $0.8 \pm 0.1 \ \mu$ M, $1.1 \pm 0.1 \ \mu$ M

S/N	Author, YYYY	RNase	Experiment		Viab (prin of < well	ole cells mary ir 5.5 × 1)	s (%)* ioculat 0 ⁵ cell:	tion s/	Overall cell viability
			Cell lines (Description)	Concentration	0 h	24 h	48 h	72 h	
1	Laccetti et al., 1994 [12]	BS-RNase	3LL (Murine Lewis lung	Control	100	100	100		$\downarrow\downarrow\downarrow\downarrow$
			metastasis cells)	BS-RNase, 0.1 µg/ml	100	95	25		
				BS-RNase, 1.0 µg/ml	100	50	5		
				BS-RNase, 10 µg/ml	100	20	0		
2	Darzynkiewicz et al., 1988	P-30 protein (Pannon)	HL-60 (Human promyelocytic	Control	100	100	99	99	\downarrow
	[16]		leukemia)	P-30, 10 µl/ml	100	90	85	70	
				P-30, 20 µl/ml	100	85	66	48	
3	Ardelt et al., 2007 [24]	Amphinase (Amph)	HL-60 (Human promyelocytic	Control			100	99	$\downarrow\downarrow$
			leukemia) 11-937 (Human monocytic	Amph, 1 µg/ml			80	55	
			leukemia)	Amph, 5 µg/ml			80	40	
			Jurkat cells (T-cell leukemia)	Amph,10 µg/ml			70	10	
4	Fang et al., 2012 [34]	RNase MC2	HepG2 (human liver cancer	Control	100				\downarrow
			cell)	MC2, 15 µM	100	83	65		
				MC2, 25 μM	100	75	55		
				MC2, 60 µM	100	55	45		
5	Joseph et al., 2020	Lp16-PSP RNase	HL-60 (Human promyelocytic	Control		100	100		\downarrow
	[31]		leukemia)	Lp16-PSP, 50 µg/ml		70	55		
				Lp16-PSP, 100 µg/ml		50	25		
				Lp16-PSP, 150 µg/ml		35	20		
				Lp16-PSP, 200 µg/ml		25	15		

Table 4 Percent cell viability of RNase treated and untreated cell lines

*Appropriate cell densities were initially seeded for each experimental cell model. Upown arrows indicate the decreasing pattern of viability

and $1.0\pm0.2 \ \mu\text{M}$ on cervical cancer, drug resistant ovarian cancer and normal human fibroblast cells respectively. Bovine seminal RNase [12] and RNase from mushroom *L. shimeiji* [30] showed lower IC₅₀ towards metastasis-derived Lewis lung carcinoma (IC₅₀=0.07\pm0.0 \ \mu\text{M}) and human liver cancers (IC₅₀=6.2\pm0.0 \ \mu\text{M}) cells respectively.

In vivo antitumor and antimetastasis effect of eukaryotic RNases

Together with other in vivo parameters, tumor volume enabled researchers to determine the antitumor efficacy of eukaryotic RNase in vivo models. In this review, only 25% (6/24) of the total included RNase studies were further assessed tumor volumes of experimental animal models (Table 5).

Appropriate tumor-bearing animal models were selected for each interventional ribonucleases. Then, these animals were xenografted with appropriate cancerous cells subcutaneously. Xenografted tumors were allowed to reach to appropriate tumor volume before any experiment carried out. Treatment groups of animal models were treated with various concentrations of interventional RNases while control groups of animals were injected with PBS/Buffer solution. Modes of administration of intervention or placebo were varied from study to study where intraperitoneal (*i.p.*), inratumoral (*i.t.*), intravenous (*i.v.*) and subcutaneous injections were the most commonly used. Tumor volume of xenografted animals was measured at different days of interval from the 1st day to 23rd day.

Ribonucleases treated xenografted animals showed lower tumor volumes compared to matched control animals (Table 5). For instance, HepG2 tumor-bearing BALB/c nude mice were intraperitoneally injected with a 2 mg/kg of MC2 RNase on every other day [34]. Tumor volume of HepG2 tumor – xenografted animals was measured in mm³ for several days. The MC2 RNase treated animals showed diminished tumor volume compared to phosphate buffer solution (PBS) injected animals. Higher concentration of bovine seminal RNase (12.5 mg/kg) and lower concentration of wheat leaf ribonuclease (100 µg/mouse in seven doses over a period of 20 days) treated tumor – bearing animals showed lower tumor volume compared to their respective controls. Ranpirnase, Onc®, treated A549 NSCLS xenografted [39], DU145 prostate tumor-xenografted [18] and A549

tumor – bearing athymic nude mice [20] demonstrated diminished tumor volumes compared to the antitumor effect of alkylated onconase in vivo [18].

Furthermore, tumors bearing Fischer rats were induced by highly metastasis cells of Lewis lung cells (3LL) and administered with BS-RNase intraperitoneally. The 10 μ g/g and a 20 μ g/g body weight of BS-RNase treatment caused about 67% and 92% inhibition respectively against the occurrence of lung metastases compared to untreated animals [12] (Data not shown). Similarly, a study by Patutina and colleagues (2011) examined antimetastasis effect of Pancreatic RNase A towards Lewis lung carcinoma (LLC) and hepatoma A-1 (HA-1) transplanted animals. Hence, H&E stained tissues microscopic examination of lung surface of BS-RNase treated animals revealed a significant decrease in the number of metastases than that of untreated animal [15].

Toxicity and safety of eukaryotic RNases

Table 6 shows safety and toxicity related findings on cell lines, laboratory animals and clinical patients. The overall safety parameters measurements in two clinical trial studies [19, 22] encourage the future application of Ranpirnase in clinical medicine. In phase II clinical trial of ranpirnase, 14 patients with unresectable kidney cells carcinoma were enrolled and adverse events were recorded [19]. In this clinical trial, only a single patient demonstrated a hypersensitivity reaction; so that, the anticancer RNase drug was withdrawn [19]. In recent phase II clinical trial study on patients with unresecteble malignant mesothelioma, 15.2% (16/105) were removed from the study due to renal insufficiency, allergic reaction, proteinuria and other adverse experiences [22]. A nephrotoxicity study by Skvor et al., (2006) documented a reversible proximal tubular toxicity from Onconase[®] treated apparently healthy mice [33]. In this study, H&E staining of kidney tissues of apparently healthy mice treated with Onconase® demonstrated a moderate multifocal proximal renal tubule necrosis though it was reversed by two weeks after the drug had withdrawn. Ribonucleases MC2, WLN-RNase and BS-RNase treated BALB/c nude mice bearing HepG2 liver cancer, human lymphocytes & athymic nude mice, and 3LL Lewis lung metastasis bearing mice respectively showed promising safe ribonuclease therapy [12, 33, 34]. In these experimental studies, no detectable toxicity to normal tissues, low immunogenicity & embryotoxicity, absence of physical / behavioral changes and absence of allergic symptoms were observed. However, degenerative spermatogenic epithelium has been detected in WLN-RNase treated athymic nude mice [33]. Cell culture-based in vitro toxicity was also determined through half maximal inhibitory concentration (IC₅₀) of RNase Lp16-PSP treated several cell lines [31] where IC₅₀ of Lp16-PSP was lower in cancer cells than non-cancerous cells indicating the higher selective cytotoxicity of RNase Lp16-PSP.

Discussion

In spite of major advancements in cancer patient management have been in use, several human cancers, unresectable malignancies in particular continue incurable and consequently, cause serious cancer outcomes. On the other hand, exploring novel anticancer chemotherapeutic agents is undergoing. Antitumor ribonuclease enzymes,

S/N	Author, YYYY	RNase	Experiment			Tumo	r volu	me (M	ean, m	m³)	Tumor
			In vivo model	Drug Administration	Injection Dose	1d 5	5d 9	d 11	d 13	d 23d	- volume
-	Fang et al., 2012	MC2 RNase	BALB/c Nude mice bearing Hep G2	Intraperitoneal injection (i.p.)	Control	10	12 2	0 30	35	50	\rightarrow
	[34]		tumor		MC2, 2 mg/kg	10	8	9	Ś	, -	
7	Lee et al., 2007	Ranpirnase (Onc [®])	Female athymic NCR-nu/nu nude	Intravenous (i.v.) or Intra-	Control	250 2	275 5	00 75	0 95(175	\rightarrow
	[39]		mice bearing human A549 NSCLC	peritoneal injection (<i>i.p.</i>)	ONC, 2.5 mg/kg	250 2	260 3	50 65	0 85(125	0
			xenograit		ONC, 5 mg/kg	250 2	250 2	60 26	0 55() 750	
					ONC, 10 mg/kg	250 2	250 2	60 26	0 25() 650	
m	Lee et al., 2000 [18]	Ranpirnase (Onc [®])	DU145 hu prostate tumor xeno-	Intraperitoneal injection (i.p.)	Control, Saline	250 4	400 5	50 70	0 95(125	→ ○
			grafted nude mice		Onconase, alkylated	250 3	300 4	00 55	0 700	120	0
					Onconase, 5 mg/kg	250 1	100	00 20	0 300	700	
4	Magnitsky et al., 2006 [20]	Ranpirnase (Onc [®])	A549 tumor bearing Female Athymic	Subcutaneous	Control, saline	250 2	250 3	50 50	0 55() 750	\rightarrow
			NCR-nu/nu nude mice		Cisplatin, 5 mg/kg	250 2	250 3	00 35	0 400	9 450	
					Onconase, 10 mg/kg	250 2	250 2	00 20	0 25(300	
					Onconase + Cisplatin	250 2	200 2	00 15	0 200) 250	
ŝ	Pouckova et al., 1998 [13]	BS-RNase	Human melanoma xenografted	Intratumoral injection (i.t.)	Control	50	70	00 14	0 30(320	\rightarrow
			mouse		BS-RNase, 12.5 mg/kg	30	20 2	0 10	Ŋ	4	
		BS-RNase	Mice seminoma xenografted mouse	Intratumoral injection (i.t.)	Control	40	50	00 16	0 18(0 200	\rightarrow
					BS-RNase, 12.5 mg/kg	40	0	0	0	0	
9	Skvor et al.,2006 [40]	WLN-RNase	Athymic human xenograft melanoma	Intraperitoneal injection (i.p.)	Ctrl, PBS,100 µg /mouse	20	0	00 18	0 25() 280	\rightarrow
			nu/nu mice		RNase A,100 µg /mouse	20 4	10	00 19	0 24(0 280	
					WLN-RNase,100 µg/mouse	10	15 3	0 70	10(0 120	
					BS-RNase,100 μg /mouse	10	10 1	5 40	50	70	
- р	Jays, 4 – Decreased, Onc – Oncon	iase, BS – Bovine Semin	al								

Table 5 Tumor volume of eukaryotic ribonucleases treated xeno-grafted experimental animals

Ta	ble 6 Safety related finding:	s of RNase treated	laboratory mo	dels and cancer patients		
Å	Author, YYYY	RNase	Mol. Wt (kDa)	cell lines / in vivo	Method / Assay	Safety / toxicity
— —	Mikulski et al., 2002 [22]	Ranpirnase	12	Phase II clinical trial on patients with unresectable Malignant Mesothelioma	Safety measurements (frequency of adverse events using physical, vital signs and laboratory evaluations)	- Sixteen (15.2%) of 105 patients were removed from the study because of adverse experiences (renal insufficiency, allergic reaction, proteinuria)
\sim	Vogelzang et al., 2001 [19]	Ranpirnase (Onc [®])	12	Phase II clinical trial on patients with unresectable kidney cell carcinoma	Physical examinations, lab. analysis and adverse events of 14 patients were performed / recorded weekly	 No higher level toxicities occurred 5 patients with increased serum creatinie 1 patient with 4 + proteinuria Drug withheld in 1 hypersensitive patient
\sim	Fang et al, 2012 [34]	RNase MC2	14	BALB/c Nude mice bearing Hep G2 Liver cancer	In vivo: tumor dimension, tumor volume, body weight, tissue Immuno- histochemical staining	 No detectable toxicity No effects on body weight No toxicity to normal tissues
4	Skvor et al., 2006 [33]	WLN-RNase	27	human lymphocyte and athymic nude mice	Immunosuppressive activity and Sper- matogenic toxicity analysis	 Low immunogenicity & embryotoxicity degenerative spermatogenic epithelium No allergic symptoms observed
5	Vasandani et al., 1999 [17]	Onconase	12	Apparently healthy mice	Kidneys examination using H&E tissue staining	 Proximal tubular toxicity was reversible after two weeks of treatment withdrawn
9	Laccetti et al., 1994 [12]	BS-RNase	4	- Fischer rat, - 3LL Lewis Lung Carcinoma - metastasis bearing mice	Heamatological tests, Physical & behav- ioral measurements, tumor & lung size measurement and H&E tissue staining	 No anemia & leukocytosis in treated tumor bearing animals No physical & behavioral changes in treated healthy animals No changes in hematologic tests in treated healthy animals
\sim	Joseph et al., 2020 [31]	Lp16-PSP	32	HeLa, HepG2, HL-60, HCT-15, SGC-7901, SKOV-3, HaCaT	Cell Counting Kit-8 (CCK-8)	 Higher selective cytoxicity i.e. IC₅₀ of Lp16-PSP was lower in cancer cells than non-cancerous cells

(2022) 7:5

a family of small (10 – 28 kDa) basic proteins, are among these researched potential chemotherapeutic agents [41]. Based on the protein sequences, RNases are classified in to different superfamilies [42] including RNase A, H, L, P, E, G, PH, T, I, II and others. Ribonucleases are common ribonucleolytic hydrolases present in cellular entities primarily for RNA processing and maturation [43]. Broadly, ribonucleases are obtained from eukaryotic origin [2, 12, 24, 29, 34, 44] and prokaryotic organisms [45-54]. The selective cytotoxicity of some ribonucleases towards cancerous cells [23, 55, 56] makes RNase a promising alternative chemotherapy in the future clinical patient management. Eukaryotic and prokaryotic origins of RNases in combinations of known anticancer drugs [57-61] and potent anti-malarial drug, dihydroartemisinin, [62] also showed synergistic anticancer effect on in vitro and in vivo studies.

Data retrieval, analysis and presentation of eukaryotic ribonucleases were the main objective of this review. The multiple sequence alignment of protein sequence data of eukaryotic ribonucleases obtained from UniProt knowledgebase showed similar active site positions, 14 identical sequence positions and higher proportion of hydrophobic segments. The higher proportion of hydrophobicity helps the ribonucleases to interact easily with tumor cell and endosomal membranes. Some evidences including [63] showed the absence of hydrophobic segments in the aminoacid sequences of non-cytotoxic ribonucleases. Furthermore, the hydrophobic properties of cytotoxic ribonucleases are essential for lipid – protein interaction and cytotoxicity mechanism [63], and biological energy transduction [64]. On the other hand, increased hydrophobicity of protein sequences of various enzymes may cause loss of their conformational specificity [65].

Twenty four articles on different eukaryotic RNases were selected to explore anticancer potential of eukaryotic RNases. Anticancer potential of these RNases was investigated through cytostatic & cytotoxic parameters of treated cell lines, tumor weight and volume of tumor induced laboratory animals, and survival rates & time to progression of cancer patients under a clinical trial studies. In this review, MTT, TBE, flow cytometer or fluorescent microscopic analysis of treated and untreated cell lines were techniques that most researchers employed to determine the cytotoxicity or cell growth inhibition capacity of eukaryotic ribonucleases. Ribonucleases from oocytes of Rana pipiens and other species of genus Rana frogs were the most extensively investigated RNase superfamily. Among these amphibian ribonucleases, ranpirnase is a novel RNA targeting drug where degradation of tRNA is considered the main mechanism of its cytotoxicity [66, 67]. Moreover, up-regulation of proapoptotic proteins, mitochondrial transmembrane potential interference, targeting families of microRNAs and antioxidant activity of ranpirnase can also be important elements of its cytotoxic capability towards various cancerous cells [37, 68].

Another clinically potential eukaryotic ribonuclease from amphibians is amphinase, which is obtained from oocytes of Northern leopard frogs (*Rana pipiens*). The cumulative data on amphinase demonstrated marked cell growth inhibition of lymphoid malignancies and other cell lines in amphinase treated cancer cells compared to untreated control cells. Previous reviews concluded that Onconase[®] and amphinase ribonuclease are able to enter the cellular entities and that target therein is RNA destruction which manifests by observed cytotoxicity and cytotstatic effects [37, 69]. Its fusion with a transforming growth factor- α (TGF- α) protein also exhibited more significant cytotoxicity on high epidermal growth factor receptor (EGFR) expressing tumor cells [70].

In vitro and in vivo preclinical studies of other antitumor eukaryotic ribonucleases (BS RNase, MC2, wheat leaf neutral ribonuclease, Lp16-PSP) open encouraging opportunities to develop safe and effective anticancer drugs. Eukaryotic ribonucleases possess capability to selectively kill cancer cells, minimize metastasis ability of cancer cells & reduce in vivo tumor volume, and lower immunogenicity and toxicities. Unlike DNA-targeting anticancer drugs, ribonucleases are non-genotoxic and their RNA degradation allows altering genetic expression at different phases of cell cycle which leads cancer cells to death [71]. Obviously, the currently used anticancer chemotherapeutics strategies are limited due to their genotoxicity of normal cells, tumor cell heterogeneity, target variability and severe side effects.

A decade years back, on May 28, 2008, an abstract form of a confirmatory phase IIIb clinical trial of Onconase® in combination with doxorubicin of malignant mesothelioma was reported. Although Onconase® did not meet a statistical significance for primary endpoint of survival (p=0.80), it showed a median survival time of 11.1 months for Onconase® plus doxorubicin treated MMe patients compared to 10.7 months for doxorubicin alone treated patients [72]. In the same clinical trial, a statistical significant improvement of survival among unresectable MMe patients who previously failed for one prior chemotherapy regimens was reported (p = 0.016) and the median survival time for Onconase® plus doxorubicin treated evaluable patients was 10.5 months compared to 8.7 months for patients who received doxorubicin drug alone. Hence, based on this preliminary report, the Alfacell Corporation continued New Drug Application (NDA) of Onconase® to the U.S. Food and Drug Administration (FDA) though, to the best of our

knowledge, there is no recent update concerning the status of Onconase[®] drug.

Phase II clinical trial of Onconase[®] in malignant mesothelioma revealed that Onconase[®] is clinically active in which the respective median survival time, 1-year and 2-year survival rates of Onconase[®] are 11.3 months, 46.2% and 34.3% while its correspondences of doxorubicin are 9.1 months, 34.5% and 10.7% [22]. Another phase II clinical trial in patients with metastatic kidney cancer at a dose of 480 μ g/m²/w, Onconase[®] showed a minimal clinical activity with a median survival time of 16 months (ranging from 2 to 28 months) [19]. These clinical trials were carried out after a safety observations of phase I clinical trial of Onconase[®] in patients with solid tumors [73]. The maximum tolerated dose was 960 μ g/m² and the study concluded that Onconase[®] was well tolerated by majority of patients.

Conclusion and future perspective

Most eukaryotic ribonucleases are at preclinical stages of drug discovery. Their selective cytotoxicity makes them promising candidates of anticancer chemotherapeutics by which genotoxicity of the current anticancer drugs can be relieved. Ranpirnase, Onconase[®], achieved encouraging outcomes from different clinical trials particularly in the treatment of unresectable cancers including malignant mesothelioma. However, clinical studies of other ribonucleases of eukaryotic sources are still at their early stages. Hence, further in vivo investigations (i.e. clinical trials) of eukaryotic ribonucleases provide concrete evidences in recruiting alternative anticancer chemotherapeutic agent.

Abbreviations

Amph: Amphinase; ATP: Adenosine Triphosphate; BS RNase: Bovine Seminal RNase; ECP: Eosinophilic Cationic Protein; EGFR: Epidermal Growth Factor Receptor; FDA: Food and Drug Administration; hCG: Human Urinary Chorionic Gonadotrophin; H&E: Hematoxylin and Eosin; IC₅₀; Half-maximal Inhibitory Concentration; *i.p.*: Intraperitoneal; *i.t.*: Inratumoral; *i.v.*: Intravenous; kDa: killo Dalton; Lp16-PSP: Latcripin 16-Perchloric-acid Soluble Protein; MEGA: Molecular Evolutionary Genetics Analysis; MeSH: Medical Subject Heading; MMe: Malignant Mesothelioma; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); NCBI: National Center for Biotechnology; NDA: New Drug Application; NSCLS: Non Small Cell Lung Carcinoma; Onc[®]: Onconase[®]; PBS: Phosphate Buffer Solution; PDB: Protein Data Bank; PIR: Protein Information Resource; RNA: Ribonucleic Acid; RNase: Ribonuclease; RI: Ribonuclease Inhibitor; TBE: Trypan Blue Exclusion; TGF-a: Transforming Growth Factor-a; TrEMBL: Translated EMBL; UniProtKB: Universal Protein Knowledge Base; WLN: Wheat Leave Neutral; 3D: Three Dimensional.

Acknowledgements

I would like to gratitude the Bahir Dar University Library for accession of some journals which were not openly accessed. My appreciation also goes to Sebastien Santini (CNRS/AMU IGS UMR7256) and the PACA Bioinfo plat-form (supported by IBISA) for the free availability and management of the phylogeny.fr website to develop a phylogenetic tree of protein sequences of eukaryotic ribonucleases.

Authors' contributions

YAS conceived the research idea and wrote this review manuscript. The author collected relevant articles and summarized the data obtained. The author read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Summaries of information were included in the study in the form of texts, tables and figures. Conclusions were also drawn from these data. Raw data can be accessed from the author up on request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

I declare that I have no competing interests.

Author details

¹ Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia. ²Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT- Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Received: 3 December 2021 Accepted: 8 March 2022 Published online: 29 March 2022

References

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021.
- Matousek J, Matousek J. Plant ribonucleases and nucleases as antiproliferative agens targeting human tumors growing in mice. Recent Pat DNA Gene Seq. 2010;4(1):29–39.
- FDA. https://www.fda.gov/media/76409/download. 2009. Accessed 5 Jan 2021.
- Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol. 2009;625(1–3):181–9.
- Benito A, Ribó M, Vilanova M. On the track of antitumour ribonucleases. Mol Biosyst. 2005;1(4):294–302.
- Irie M, Nitta K, Nonaka T. Biochemistry of frog ribonucleases. Cell Mol Life Sci. 1998;54(8):775–84.
- Matousek J. Ribonucleases and their antitumor activity. Comp Biochem Physiol C Toxicol Pharmacol. 2001;129(3):175–91.
- Kurinenko BM. Antitumor activity of ribonucleases. Eksp Onkol. 1985;7(2):3–8.
- The UC. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.
- Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(Web Server issue):W465–9.
- Laccetti P, Portella G, Mastronicola MR, Russo A, Piccoli R, D'Alessio G, et al. In vivo and in vitro growth-inhibitory effect of bovine seminal ribonuclease on a system of rat thyroid epithelial transformed cells and tumors. Cancer Res. 1992;52(17):4582–6.
- Laccetti P, Spalletti-Cernia D, Portella G, De Corato P, D'Alessio G, Vecchio G. Seminal ribonuclease inhibits tumor growth and reduces the metastatic potential of Lewis lung carcinoma. Cancer Res. 1994;54(16):4253–6.

- Poucková P, Soucek J, Matousek J, Zadinová M, Hlousková D, Polívková J, et al. Antitumor action of bovine seminal ribonuclease. Folia Microbiol (Praha). 1998;43(5):511–2.
- Di Liddo R, Dalzoppo D, Baiguera S, Conconi MT, Dettin M, Parnigotto PP, et al. In vitro biological activity of bovine milk ribonuclease-4. Mol Med Rep. 2010;3(1):127–32.
- Patutina O, Mironova N, Ryabchikova E, Popova N, Nikolin V, Kaledin V, et al. Inhibition of metastasis development by daily administration of ultralow doses of RNase A and DNase I. Biochimie. 2011;93(4):689–96.
- Darzynkiewicz Z, Carter SP, Mikulski SM, Ardelt WJ, Shogen K. Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet. 1988;21(3):169–82.
- 17. Vasandani VM, Burris JA, Sung C. Reversible nephrotoxicity of onconase and effect of lysine pH on renal onconase uptake. Cancer Chemother Pharmacol. 1999;44(2):164–9.
- Lee I, Lee YH, Mikulski SM, Lee J, Covone K, Shogen K. Tumoricidal effects of onconase on various tumors. J Surg Oncol. 2000;73(3):164–71.
- Vogelzang NJ, Aklilu M, Stadler WM, Dumas MC, Mikulski SM. A phase Il trial of weekly intravenous ranpirnase (Onconase[®]), a novel ribonuclease in patients with metastatic kidney cancer. Invest New Drugs. 2001;19(3):255–60.
- Magnitsky S, Sunar U, Milkevitch M, Yodh A, Lee I, editors. Ranpirnaseinduced changes in blood flow, lactate, and ATP levels in A549 human NSCLC measured by noninvasive near infrared spectroscopy and magnetic resonance spectroscopy. 14th. Int Soc Magn Reson Med; 2006.
- Lee I, Kim DH, Sunar U, Magnitsky S, Shogen K. The therapeutic mechanisms of ranpirnase-induced enhancement of radiation response on A549 human lung cancer. In Vivo. 2007;21(5):721–8.
- Mikulski SM, Costanzi JJ, Vogelzang NJ, McCachren S, Taub RN, Chun H, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2001;20(1):274–81.
- Smolewski P, Witkowska M, Zwolinska M, Cebula-Obrzut B, Majchrzak A, Jeske A, et al. Cytotoxic activity of the amphibian ribonucleases onconase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. Int J Oncol. 2014;45(1):419–25.
- Ardelt B, Ardelt W, Pozarowski P, Kunicki J, Shogen K, Darzynkiewicz Z. Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle. 2007;6(24):3097–102.
- Liao YD, Huang HC, Leu YJ, Wei CW, Tang PC, Wang SC. Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog). Nucleic Acids Res. 2000;28(21):4097–104.
- Wang Z, Lin F, Liu J, Qiu F. A Novel Ribonuclease from Rana Chensinensis and Its Potential for the Treatment of Human Breast Cancer. Cancer Biother Radiopharm. 2015;30(9):380–5.
- Griffiths SJ, Adams DJ, Talbot SJ. Ribonuclease inhibits Kaposi's sarcoma. Nature. 1997;390(6660):568.
- Maeda T, Mahara K, Kitazoe M, Futami J, Takidani A, Kosaka M, et al. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases. J Biochem. 2002;132(5):737–42.
- Castro J, Ribó M, Navarro S, Nogués MV, Vilanova M, Benito A. A human ribonuclease induces apoptosis associated with p21WAF1/CIP1 induction and JNK inactivation. BMC Cancer. 2011;11:9.
- Zhang RY, Zhang GQ, Hu DD, Wang HX, Ng TB. A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji. Biochem Genet. 2010;48(7–8):658–68.
- Joseph TP, Zhao Q, Chanda W, Kanwal S, Fang Y, Zhong M, et al. Expression and in vitro anticancer activity of Lp16-PSP, a member of the YjgF/ YER057c/UK114 protein family from the mushroom Lentinula edodes C91–3. 2020.
- Kumar GR, Chikati R, Pandrangi SL, Kandapal M, Sonkar K, Gupta N, et al. Molecular docking and dynamics simulations of A.niger RNase from Aspergillus niger ATCC26550: for potential prevention of human cancer. J Mol Model. 2013;19(2):613–21.
- Skvor J, Lipovová P, Poucková P, Soucek J, Slavík T, Matousek J. Effect of wheat leaf ribonuclease on tumor cells and tissues. Anticancer Drugs. 2006;17(7):815–23.
- Fang EF, Zhang CZ, Zhang L, Fong WP, Ng TB. In vitro and in vivo anticarcinogenic effects of RNase MC2, a ribonuclease isolated from dietary bitter gourd, toward human liver cancer cells. Int J Biochem Cell Biol. 2012;44(8):1351–60.

- Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol. 2019;10:1019.
- Lee JE, Raines RTJB. Ribonucleases as novel chemotherapeutics. 2008;22(1):53–8.
- Ardelt W, Shogen K, Darzynkiewicz Z. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol. 2008;9(3):215–25.
- 38. Lee I. Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther. 2008;8(6):813–27.
- Lee I, Kalota A, Gewirtz AM, Shogen K. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res. 2007;27(1A):299–307.
- 40. Soucek J, Skvor J, Poucková P, Matousek J, Slavík T, Matousek J. Mung bean sprout (Phaseolus aureus) nuclease and its biological and antitumor effects. Neoplasma. 2006;53(5):402–9.
- Arnold U, Ulbrich-Hofmann R. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett. 2006;28(20):1615–22.
- Aravind L. and Koonin E. A Natural Classification of Ribonucleases. In: Ribonuclease Classification and Review; Methods in Enzymology. Academic Press. 2001;341:3–28.
- Condon C. RNA Processing. In: Schaechter M, editor. Encyclopedia of Microbiology. 3rd ed. Oxford: Academic Press; 2009. p. 95–408.
- Attery A, Batra JK. Mouse eosinophil associated ribonucleases: Mechanism of cytotoxic, antibacterial and antiparasitic activities. Int J Biol Macromol. 2017;94:445–50.
- Hameş EE, Demir T. Microbial ribonucleases (RNases): production and application potential. World J Microbiol Biotechnol. 2015;31(12):1853–62.
- Ilinskaya ON, Zelenikhin PV, Petrushanko IY, Mitkevich VA, Prassolov VS, Makarov AA. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response. Biochem Biophys Res Commun. 2007;361(4):1000–5.
- Dudkina E, Ulyanova V, Shah Mahmud R, Khodzhaeva V, Dao L, Vershinina V, et al. Three-step procedure for preparation of pure Bacillus altitudinis ribonuclease. FEBS Open Bio. 2016;6(1):24–32.
- Makarov AA, Kolchinsky A, Ilinskaya ON. Binase and other microbial RNases as potential anticancer agents. BioEssays. 2008;30(8):781–90.
- Mitkevich VA, Pace CN, Koschinski A, Makarov AA, Ilinskaya ON. Cytotoxicity mechanism of the RNase Sa cationic mutants involves inhibition of potassium current through Ca2+-activated channels. Mol Biol (Mosk). 2015;49(6):1041–7.
- Fang EF, Ng TB. Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta. 2011;1815(1):65–74.
- Sokurenko Y, Nadyrova A, Ulyanova V, Ilinskaya O. Extracellular Ribonuclease from Bacillus licheniformis (Balifase), a New Member of the N1/T1 RNase Superfamily. Biomed Res Int. 2016;2016:4239375.
- 52. Ulyanova V, Vershinina V, Ilinskaya O. Barnase and binase: twins with distinct fates. Febs j. 2011;278(19):3633–43.
- Shruti G, Sukhdev S, Singh KS. Purification and characterization of an extracellular ribonuclease from a Bacillus sp. RNS3 (KX966412). Int J Biol Macromol. 2017;97:440–6.
- Kanlayakrit W, Ikeda T, Tojai S, Rodprapakorn M, Sirisansaneeyakul S. Isolation and Characterization of Extracellular Halophilic Ribonuclease from Halotolerant Pseudomonas species. Nat Sci. 2001;35:179–87.
- Costanzi J, Sidransky D, Navon A, Goldsweig H. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005;23(7):643–50.
- Kanwar SS, Mishra P, Meena KR, Gupta S, Kumar R. Ribonucleases and thier Applications. Journal of Advanced Biotechnology and Bioengineering. 2016;4:17–26.
- Reck M, Krzakowski M, Jassem J, Eschbach C, Kozielski J, Costanzi J, et al. Randomized, multicenter phase III study of ranpirnase plus doxorubicin (DOX) versus DOX in patients with unresectable malignant mesothelioma (MM). Journal of Clinical Oncology. 2009;27(15 Suppl):7507.
- Zelenikhin P, Makeeva A, Nguen T, Siraj Y. Ilinskaya OJBk. Combined action of binase and bleomycin toward human lung adenocarcinoma cells. 2016;62(3):279–82.
- Porta C, Paglino C, Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics. 2008;2(4):601–9.

- Majchrzak A, Witkowska M, Mędra A, Zwolińska M, Bogusz J, Cebula-Obrzut B, et al. In vitro cytotoxicity of ranpirnase (onconase) in combination with components of R-CHOP regimen against diffuse large B cell lymphoma (DLBCL) cell line. Postepy Hig Med Dosw (Online). 2013;67:1166–72.
- Rybak SM, Pearson JW, Fogler WE, Volker K, Spence SE, Newton DL, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst. 1996;88(11):747–53.
- 62. Shen R, Li J, Ye D, Wang Q, Fei J. Combination of onconase and dihydroartemisinin synergistically suppresses growth and angiogenesis of nonsmall-cell lung carcinoma and malignant mesothelioma. Acta Biochim Biophys Sin (Shanghai). 2016;48(10):894–901.
- Shirshikov FV, Cherepnev GV, Ilinskaya ON, Kalacheva NV. A hydrophobic segment of some cytotoxic ribonucleases. Med Hypotheses. 2013;81(2):328–34.
- Isom DG, Castaneda CA, Cannon BR, Velu PD, Garcia-Moreno EB. Charges in the hydrophobic interior of proteins. Proc Natl Acad Sci U S A. 2010;107(37):16096–100.
- Stewart KL, Rathore D, Dodds ED, Cordes MHJ. Increased sequence hydrophobicity reduces conformational specificity: A mutational case study of the Arc repressor protein. Proteins. 2019;87(1):23–33.
- Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle. 2003;2(1):22–4.
- Beck AK, Pass HI, Carbone M, Yang H. Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol. 2008;4(3):341–9.
- Ardelt B, Juan G, Burfeind P, Salomon T, Wu J, Hsieh T, et al. Onconase, an anti-tumor ribonuclease suppresses intracellular oxidative stress. International journal of oncology. 2007;31(3):663–9.
- 69. Lu CX, Nan KJ, Lei Y. Agents from amphibians with anticancer properties. Anticancer Drugs. 2008;19(10):931–9.
- Shen R, Ye D, Huang Q, Li J, Wang Q, Fei J. An EGF receptor-targeting amphinase recombinant protein mediates anti-tumor activity in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai). 2018;50(4):391–8.
- Castro J, Ribó M, Vilanova M, Benito A. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents. Pharmaceutics. 2021;13(1):82.
- Alfacell Corporation U. Alfacell Corporation Announces Preliminary Results from ONCONASE[®] Phase IIIb Clinical Trial. 2008. https://www.sec. gov/Archives/edgar/data/708717/000093041308003481/c53793_ex99-1. htm. Accessed 21 Jan 2021.
- Mikulski SM, Grossman AM, Carter PW, Shogen K, Costanzi JJ. Phase-I Human Clinical-Trial of Onconase[®] (P-30 Protein) Administered Intravenously on a Weekly Schedule In Cancer-Patients With Solid Tumors. Int J Oncol. 1993;3(1):57–64.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

