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Abstract 

Host response to the human immune deficiency virus (HIV) involves both the innate and adaptive immune systems. 
As part of the innate immune system, the killer cell immunoglobulin-like receptors (KIRs) found on natural killer cells 
and some T-lymphocytes are genetically diverse and play key functions in the host response against viral pathogens. 
In the last decade, there has been substantial growth in sequencing technologies and bioinformatics capacity to 
understand human host genetics, including KIR. However, there is limited literature on how the KIR diversity informs 
the perspectives on HIV disease states in understudied African settings. A better understanding of the effects of KIRs 
on the host’s immune response to HIV in African settings is essential to inform strategies to develop more effective 
therapies and vaccines to improve health among people living with HIV (PLWH). In this paper, we review KIR diver-
sity, the role of KIR immunogenetic variation in the human host response to HIV, discuss current perspectives on the 
studies to assess the relationship between KIR diversity and the HIV disease continuum, and suggest future research 
prospects.
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Introduction
Human immune deficiency virus (HIV) infection remains 
a major global public health problem with approximately 
38 million people affected and the highest numbers of 
affected individuals found in Eastern and Southern Africa 
[1]. This is despite the reductions in morbidity and mor-
tality due to HIV with the introduction and increased 
availability of antiretroviral therapy (ART) for people liv-
ing with HIV/AIDS (PLWH). Among PLWH, there are 
differences in the adaptive and innate immune responses 
because of their underlying host genetic makeup, viral 
and environmental factors [2]. The adaptive immune sys-
tem provides long-term protection to the human host 
while the innate immune system serves as the first line 
of defense against pathogens that enter the body. In the 
innate immune response to HIV infection, natural killer 
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(NK) cells have been demonstrated to modify and direct 
the human host’s reaction to disease [3].

NK cells constitute a sub-population of lymphocyte-
related cells that recognize pathogen-infected cells and 
perform immune-regulatory functions in response to 
viral infections through the production of cytokines like 
interferon-gamma (IFN-γ) and macrophage inflamma-
tory proteins (MIP-1α /CCL3 and CCL4/MIP-1β), which 
recruit various inflammatory cells into sites of inflam-
mation [4, 5]. In addition, NK cells have surface-based 
receptors that modulate activating and inhibitory NK 
cell functions during the human host’s response to can-
cers and infections like HIV. Among these receptors are 
CD16, NKG2D, cytotoxic receptors (NKp46), CD337 
(NKp30), CD226 (DNAM-1), and members of the killer 
immunoglobulin-like receptor (KIR) family [6–12].

KIRs bind specific HLA ligands, which are encoded 
in the human region of chromosome 6q21.3 to modu-
late response to disease among the NK cell family. For 
example, KIR3DL1 interacts with HLA-Bw4 [13] while 
KIR2DL2, KIR2DS2 and KIR2DL3 receptors bind HLA-
C1 epitopes [14]. KIR2DL1, KIR2DS1, and KIR2DL2 
receptors recognize HLA-C2 molecules with lysine at 
position 80 while KIR3DS1 recognizes the open confor-
mation of HLA-F [15]. KIR3DL2 receptors interact with 
HLA A11 ligands [16]. Additionally, genetic studies have 
identified associations between the presence of KIR genes 
with their human leukocyte antigen (HLA) ligands in the 
context of HIV disease states [17–19] although  knowl-
edge gaps remain on the relevance of these associations 
in genetically diverse African populations.

Here, we present an overview of KIR immunogenetics 
in the context of their role in the human host’s response 
to HIV infection and propose future KIR-HIV research 
directions, with a focus on African populations.

KIR overview
KIRs are glycoprotein in nature, highly polymorphic and 
are encoded by genes located in a ~ 160–200 kilobase (kb) 
region of the leukocyte receptor complex (LRC) on the 
human chromosome 19q13.4 region [9, 13, 20, 21], which 
is one of the most rapidly evolving regions of the human 
genome [22].

KIR genes are named based on their structural and 
functional characteristics [23]. The KIR gene name con-
sists of information on both extracellular immunoglobu-
lin (Ig)-like domains (designated as “D”), which group 
the KIRs into categories based on the presence of two or 
three of these domains, for example, KIR2D or KIR3D; 
and cytoplasmic domains (named as either “L” for long 
or “S” for short) [9]. This structural difference based on 
domains also confers functional divergence in that KIRs 
with “S” domains are mainly activating to NK cells while 

those with “L” domains are inhibitory in nature. The final 
digit of the KIR gene name (like KIR3DL3) indicates the 
number of genes encoding a protein with this structure 
[24].

Classically, the KIR complex consists of 13 pro-
tein-coding genes (2DL1, 2DL2/L3, 2DL4,  2DL5A, 
2DL5B, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1/S1, 3DL2 
and  3DL3), and 2 pseudogenes (2DP1,  3DP1). The vari-
ability in the presence of these genes on the different 
haplotypes contributes to the KIR repertoire diversity in 
NK cells [9]. This has been attributed to intensive non-
allelic homologous recombination and gene duplication 
events [25]. Likewise, selective pressure from pathogens 
and human reproductive success leading to a balanced 
selection of KIR haplotypes also affects the evolutionary 
divergence of KIR genes [25]. KIR haplotypes are com-
monly organized according to two general structures, “A” 
and “B,” depending on the arrangement of genes on each 
haplotype. “Framework genes,” which include KIR2DL4, 
KIR3DL2, KIR3DL3 and KIR3DP1, are present in both 
haplotypes (Fig. 1).

KIR haplotype A is defined by the presence of KIR2DL3, 
KIR2DL1, KIR3DL1, KIR2DP1, and KIR2DS4 and frame-
work genes (Table  1). It has mainly inhibitory loci and 
has generally been observed in close to half of the indi-
viduals in most populations studied worldwide [26, 27]. 
Of note, haplotype A has KIR2DS4 as the only activating 
gene and in some cases, there may be a complete absence 
of any activating gene due to the existence of a 22 base 
pair deletion in exon 5 in the transmembrane domain of 
the common null 2DS4 allele [28]. In contrast, KIR hap-
lotype B is defined by the presence of variable combina-
tions of activating and inhibitory genes and alleles [25, 
29]. Recombination hotspots are located at the centro-
metric (Cen) and telomeric (Tel) ends of each of the hap-
lotypes with the major hotspot at the Cen –Tel Junction 
[30]. Crossover at these hotspots leads to the formation 
of hybrid haplotypes like CenA-TelB or CenB-TelA which 
are conventionally classified under haplotype B [31].

On the African continent, researchers have explored 
the diversity of the KIR region, but the number of studies 
remains limited (Fig. 2) compared to the population den-
sity (Supplementary table, S1) and genetic diversity of the 
continent. The diversity of the KIRs has been explored 
at both the gene content and allelic diversity levels 
(Table  2). For example, in a gene content study among 
492 healthy female individuals from Uganda, East Africa, 
the frequencies of KIR telomeric B region genes KIR3DS1 
and KIR2DS1 were significantly less than those in a UK 
database [32]. Another study focused on both gene con-
tent and allelic diversity discovered that the Ga-Adangbe 
people from Ghana had a high diversity of KIR alleles 
encoding HLA-C ligand receptors and low diversity of 
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genes in the KIR telomeric region encoding Bw4 specific 
–KIR3DL1 genes [33]. In this study, a KIR3DL1/KIR3DL2 
fusion gene was uncovered and found unique in Afri-
can populations in comparison with other non-African 
populations. Additionally, 10% of the Ga-Adangbe KIR 

haplotypes identified in this study were missing one 
of the three framework genes, which was a high preva-
lence. Likewise, new variants of KIR2DL1 that change 
HLA-C ligand specificity, and new haplotype variations 
of KIR3DL2 and KIR2DL4 were identified together with 

Fig. 1 Arrangement of KIR genes on the KIR haplotypes A and B as adapted from previous research [9]. Framework genes are common in both 
haplotypes A and B. KIR2DL4 performs both inhibitory and activating functions

Table 1 Differences between the KIR haplotypes

Characteristic KIR haplotype A KIR haplotype B

Gene content KIR2DL3, KIR2DL1, KIR3DL1, KIR2DP1, KIR2DS4 and framework 
genes

KIR2DL2, KIR3DS1, KIR2DS1, 
KIR2DS2,KIR2DS5 and framework genes

Functionality Has mainly inhibitory functions Has both activating and inhibitory functions

Fig. 2 A map of the African continent showing where KIR studies have been conducted among HIV positive and or HIV negative populations
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common duplications of the KIR3DL1 and KIR2DL4 [33]. 
At the allelic level, the 208 allele-level haplotypes from 
19 gene content KIR haplotypes were recognized among 
the Ga-Adangbe population [33]. Approximately 95% 
of these alleles encoded different combinations of KIR 

proteins and functional characteristics. Although there 
was high allele diversity in this population, the frequency 
of the haplotypes remained below 10% [33]. Our previous 
work involving African, Middle Eastern, East and Cen-
tral Asian, European, American and Ocean populations 

Table 2 Table showing the different KIR gene content and allele level studies from Africa

Region Country Sample size Reference Gene content or allele content study Findings

North Africa Tunisia N=267 [35] Gene content KIR2DS4 and KIR2DL3 were the most common 
genes

Egypt N=150 [36] Gene content KIR2DL1 was present in all donors (100%) and 
pseudogene KIR2DP1 was observed in close to 
93.8% of donors

East Africa Tanzania N=253 [37] Gene content The frequencies of KIR3DS1 ranged between 5.3% 
and 10.3 %.

N=83 [35] Gene and allele content Three KIR3DL3, two KIR3DL1, and two KIR3DL2 
alleles were common across the populations. Two 
common telB haplotypes are present in the three 
east African populations: Hadza (11.5% frequency), 
Iraqw and Datooga 
The frequencies of the cenA/B and tel A/B ratio 
of haplotypes in the population from Tanzania 
ranged between 1.4-2.3 and 2.3 -16.0 respectively.,

Uganda N=492 [32] Gene content  High frequencies of KIR2DL2, KIR2DL5, 
and KIR2DS5 and lower frequencies 
of KIR2DL3 and KIR2DS3

N=300 [38] Gene content High prevalence of KIR2DL1, KIR3DL1 and KIR2DS4

West Africa Ghana N=235 [33] Gene and allele content 208 allele-level haplotypes from 19 gene content 
KIR haplotypes were recognized among the Ga-
Adangbe population

Mali N=58 [35] Gene and allele content Three KIR3DL3, two KIR3DL1, and two KIR3DL2 
alleles were common across the populations. 
KIR3DL3*00901–2DL3*001–2DL1*00302 was the 
among the most frequent Centromeric haplotype 
among the Datooga and the Fulani

Cote d’Ivoire N=66 [34] Gene content Exposed Sero Negative Female sex workers (ESNN 
FSWs showed significantly higher frequencies of 
inhibitory KIR2DL2 and KIR2DL5 than Seropositive 
Female sex workers.

Burkina Faso N=279 [39] Gene content High frequency of KIR2DL2, KIR2DS3, and KIR2DS4 
genes in HIV -1patients than in the control group

Cameroon N=80 [17] Gene content KIR2DL2, KIR2DL3, KIR3DL1, and 
KIR2DS2 and KIR2DS4 were present in >70.0% of 
the study population

The Gambia N=535 [40] Gene content High frequencies of KIR2DL1 and KIR2DL4, low 
frequencies of KIR2DS1 and KIR2DS5

Southern Africa South Africa N=309 [41] Gene content Low frequencies of KIR2DL2/KIR2DL3 and high 
frequencies of KIR2DL4 and KIR2DL1 across the 
population studied.

N=364 [42] Gene content Different frequencies of KIR genes in the black 
Africans, Caucasians, Indians and mixed ancestry 
ethnic groups. Indians had high frequencies 
of KIR2DL2, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3 
and KIR3DS1, the lowest frequencies of KIR2DL3, 
KIR2DS4 and KIR3DL1; and a KIR2DL4-negative 
individual

Zimbabwe N=183 [43] Gene content KIR2DL3 and KIR3DS1 genes were associated with 
high plasma Immunoglobulin protein (IP-10 
levels.)
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from the Human Genome Diversity Project—Centre 
d’Etude du Polymorphisme Humain (HGDP-CEPH) 
panel also found high gene content diversity among the 
Africans [27]. The San, Papuan and Mbuti African popu-
lations had few or no individuals with any of the top six 
genotypes identified in other populations in the panel. It 
is also interesting to note that the three African hunter-
gatherer populations (San, Biaka and Mbuti pygmies) in 
the HGDP-CEPH panel showed high overall KIR B hap-
lotype frequencies except for KIR2DS1, KIR2DS3, and 
KIR3DS1 [27]. Another KIR gene content study was per-
formed in Cote D’Ivoire where they found significantly 
higher frequencies of the KIR2DL2 and KIR2DL5 genes 
when comparing the HIV-exposed seronegative and 
HIV-positive female sex workers [34].

Another study involving African populations identi-
fied significant differences in allele frequencies of KIR 
variants between the Baka and Fulani from West Africa, 
Mbuti from central Africa, and Datooga, Iraqw and 
Hadza from Tanzania in East Africa [44]. In that study, 
28 new KIR alleles that were each specific to one of the 
seven populations from Sub-Saharan Africa were iden-
tified. The Baka, which is a pygmy population had the 
highest number of KIR alleles (16 alleles); an illustration 
of how divergent they were from their common ancestors 
when compared to other populations [44].

Based on these studies, it is clear that African popu-
lations have unique KIR variation and complexity and 
it is likely that additional KIR gene content and allele 
level genetic variation can be discovered if large popula-
tion studies from all regions of Africa are conducted. We 
anticipate that KIR diversity on the African continent 
will continue to prove extensive, as previous studies have 

demonstrated that Africa has high human genomic diver-
sity relative to other continents [42].

KIR Immunogenetic variation and relevance to immunity 
in HIV among African populations
KIR associations with HIV disease states
Several studies have supported the existence of a rela-
tionship between KIR variation and immunity to HIV, 
which we discuss here in the context of  infection acqui-
sition  and  progression stages among PLWH. A study 
among 183 treatment-naive HIV-infected adults of Bantu 
origin from Zimbabwe found the KIR2DL3 gene associ-
ated with markers of chronic immune activation in HIV 
as measured by plasma concentrations of interferon-
γ-induced protein 10 (IP-10) as a proxy for NK cell 
response to HIV infection (Table  3) [41]. However, the 
application of the findings from this paper is limited 
by the small sample size, the use of samples from only 
southern Africa and the fact the IP-10 concentrations are 
non-specific for HIV disease [43, 45]. In another study, 
among 145 HIV-1 infected patients and 134 HIV-nega-
tive individuals, KIR3DL1 was associated with protective 
effects against HIV infection among adults in Burkina 
Faso [37]. A possible explanation for the protective KIR 
effects may be through increased NK cell activation and 
clonal expansion leading to stronger antiviral effects on 
HIV-infected cells [46]. In contrast, a study conducted in 
Tanzania found that KIR3DS1 in combination with HLA-
Bw4-80Ile was significantly associated with an increased 
risk of HIV infection [47]. Another study, evaluating 
HIV-positive women in South Africa found no associa-
tion between KIR genes and HIV acquisition [39].

Table 3 KIR diversity and associations with HIV disease continuum

KIR genes Populations HIV stage Findings References

KIR2DL5 and KIR2DS1 Cameroonians n = 80 (HIV-exposed infected (HEI) 
n = 14, HIV-exposed/uninfected (HEU) n = 39, and HIV-
unexposed/uninfected (HUU) n = 27)

Infection acquisition Reduced HIV infection acquisition [17]

KIR3DS1/ KIR3DL1 Tanzanians, (HIV infected (n = 74) and HIV uninfected 
(n = 174))

Infection acquisition Increased HIV infection acquisition [47]

European ancestry individuals from Western Australia 
(n = 365)

Progression to AIDS Slow progression to AIDS [48]

Burkinabes n = 279 (145 HIV-1 infected patients and 134 
seronegative individuals (HIV-1 negative)

Infection acquisition Reduced HIV infection acquisition [37]

HIV infected Chinese Han (n = 132) Progression Slow progression to AIDS [19, 34]

KIR2DL5 Polish (n = HIV-1-positive, n = 459, HIV-1 unin-
fected n = 118) and in uninfected, healthy blood 
donors, n = 98)

Infection acquisition Increased HIV infection acquisition [49]

KIR2DL2 European ancestry individuals from Canada
(n = 80 HIV exposed uninfected, 304 HIV infected)

Infection acquisition Reduced HIV infection acquisition [50]

KIR2DS2 European ancestry individuals from Western Australia 
(n = 365)

Progression to AIDS Faster progression to AIDS [48]
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Using linear mixed models, the presence of KIR hap-
lotype BB has been associated with lower HIV viral load 
copies among HIV infected women at cross-sectional 
analysis [39]. Although, there are no studies that have 
replicated this finding, it is worth exploring in future 
research and clinical studies as more next generation 
sequencing data becomes available.

In terms of HIV disease progression, the KIR3DL1/S1 
genes have been associated with slow disease progres-
sion among African-Americans and European American 
PLWH although studies from Africa are lacking [18, 19, 
48, 51]. Given the above evidence, it is difficult to draw 
consistent conclusions on KIR associations and HIV dis-
ease states across the different populations. On the other 
hand, inconsistencies in previous research findings may 
point to the possibility that novel KIR associations may 
be uncovered if more systematic KIR studies in HIV pop-
ulations are performed on the diverse African continent.

Effect of ART on KIR functionality among PLWH
Globally, almost all countries currently implement the 
World Health Organization (WHO) recommendation 
of treating all individuals with ART who test positive for 
HIV infection irrespective of CD4 T-cell count or age 
[52], with the effect of exposing individuals to ART for a 
long time. ART does not eliminate the virus but acts by 
reducing HIV viral load and delaying both the progres-
sion to AIDS and HIV–related immune activation, which 
would otherwise lead to immune dysregulation and 
T-cell dysfunction [53, 54].

There have been few studies globally on the effects of 
exposure to ART and the functionality of NK cells and 
their KIRs [55]. A study evaluating the phenotypic and 
functional characteristics of NK cells found that ART-
naïve American patients with HIV viremia had signifi-
cantly reduced  CD56dim/CD16+ subsets of NK cells as 
compared to the healthy donors [56]. In the same study, 
those  HIV+ individuals with below detectable viremia 
after ART for two years had a more conservative expres-
sion of KIR2DL2, KIR2DL1 and KIR3DL1 genes than 
high viremia patients [56]. However, this study had a 
small sample size of 46 participants, was performed in 
non-African settings and did not explore all KIR genes, 
limiting its transferability to African settings and popula-
tions. By contrast, there are no studies that have evalu-
ated the KIRs among PLWH in Africa that have had 
prolonged exposure (at least ten years) to ART. There 
are also  no studies that have evaluated the association 
between specific KIR haplotypes and HIV treatment 
response outcomes. Clinically, an understanding of the 
functionality of KIRs in the context of the presence or 
absence of ART may enhance our knowledge of the HIV 

disease trajectories and immunological determinants of 
outcomes of treatment.

Prospects for KIR‑HIV research in African settings
The Human Heredity and Health in Africa (H3Africa) 
consortium initiative was established with funding part-
nerships from the US National Institutes of Health (NIH) 
and Wellcome Trust to spearhead innovative commu-
nity-oriented research into the genetic and environmen-
tal basis for human diseases of relevance to Africans as 
well as to build capacity for genomic research on the con-
tinent [57]. In its first and second phases of funding, the 
H3Africa network of researchers focused on the under-
standing of the complex genetics of Africans and the 
advancement of genomic technologies uptake across the 
African continent in the race towards the application of 
genomic findings into clinical care. As a result, the lev-
eraging of the collected samples and genomic findings 
across this consortium from African populations [58–61] 
may offer new prospects about the gateways into the 
understanding of human disease pathways, especially in 
genetically complex regions in the human genome like 
the KIR region. In the same way, the continued engage-
ment of the breadth of the established expertise, collabo-
rations and newly trained genomic researchers in tandem 
with the increased bioinformatics capacity in Africa by 
the H3Africa consortium and its post-funding re-organ-
izations offers a great opportunity for the advancement of 
KIR-HIV research in Africa.

Furthermore, future studies on KIR diversity and the 
KIR-HIV relationship on the African continent may 
benefit from the use of the emerging genomic technolo-
gies and bioinformatics tools like Pushing Immunoge-
netics to Next-Generation bioinformatics pipeline [62, 
63], Oxford Nanopore technologies [64, 65] and Pacific 
Biosciences [66] to close four key knowledge gaps. 
Firstly, the nature of KIR diversity in underrepresented 
geographic regions within Africa. Secondly, research in 
the identification of epigenetic mechanisms that deter-
mine KIR functional diversity among PLWH exposed 
to varying environmental and pathogen stresses, ageing 
with HIV, living with comorbidities of non-communica-
ble diseases and HIV/ AIDS-related complications.

Thirdly, the spectrum of KIR associations with clinical 
outcomes in both infectious and non-communicable dis-
eases among Africans; and fourthly, the creation of geo-
graphically representative scaffolds for the determination 
of KIR genotypes and haplotypes to support short-read 
and long-read sequencing technologies. The closure of 
these knowledge gaps may inform translational research-
ers to design actionable vaccines and therapeutic targets 
that may help improve the lives of PLWH.
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Concluding remarks
KIRs remain genetically diverse at both the gene con-
tent and allelic levels across human populations leading 
to altered NK cell immune activity even in HIV infec-
tion. KIR genes like KIR2DL5 and KIR3DL1/S1 are asso-
ciated with HIV disease acquisition and progression to 
AIDS phenotypes among population studies from Africa 
and other continents. However, our current knowledge 
of KIR diversity in Africa remains limited in compari-
son to the size, population density, and genetic diversity 
of the continent. A pertinent understanding of the KIR 
genotype and haplotype diversity relevant to HIV dis-
ease phenotypes in African populations would undoubt-
edly inform advances in our understanding of the host’s 
innate immune responses in HIV infection and vaccine 
design studies. Similarly, a further utilization of the avail-
able and novel techniques in bioinformatics and KIR 
genetics research technologies is required to fill knowl-
edge gaps and guide future research in HIV populations 
especially in Africa, which has a disproportionate burden 
of HIV and other infectious diseases.
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