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Abstract 

Background Despite the successes of checkpoint inhibitors targeting T‑cell receptors, clinical efficacy is highly can‑
cer‑dependent and subject to high inter‑individual variability in treatment outcome. The ability to predict the clinical 
success in different cancer indications is therefore an important capability for successful clinical development. In this 
meta‑analysis, the main goal was to identify factors that modified the clinical efficacy estimates of checkpoint block‑
ade therapies derived from preclinical animal data to improve the robustness and reliability of such estimates.

Methods To this end, animal studies testing checkpoint inhibitors (anti‑PD‑1, anti‑PD‑L1, anti‑CTLA‑4) were identified 
in PubMed ranging from 1.01.2000 to 31.12.2018. The eligibility criteria included the reporting of the Kaplan–Meier 
estimates of survival and the number of mice used in each experiment. A mixed‑effects model was fitted to the pre‑
clinical and clinical data separately to determine potential sources of bias and heterogeneity between studies.

Results A total of 160 preclinical studies comprising 13,811 mice were selected, from which the hazard ratio (HR) 
and the median survival ratio (MSR) were calculated. Similarly, clinical Phase III studies of checkpoint inhibitors were 
identified in PubMed and the ClinicalTrials.gov database ranging from 1.01.2010 to 31.12.2020. This resulted in 62 
clinical studies representing 43,135 patients subjected to 8 therapies from which overall survival (OS) and progression‑
free survival (PFS) hazard ratios were obtained. Using a mixed‑effects model, different factors were tested to identify 
sources of variability between estimates. In the preclinical data, the tumor cell line and individual study were the main 
factors explaining the heterogeneity. In the clinical setting, the cancer type was influential to the inter‑study variabil‑
ity. When using the preclinical estimates to predict clinical estimates, the cancer‑type specific estimates of treatment 
effect using the MSRs better approximated the observed clinical estimates than the HR‑derived predictions.

Conclusions This has strong implications on the design of ICB preclinical studies with respect to sample size deter‑
mination, selection of cancer cell lines and labs to run the experiments and the choice of efficacy measure.

Background
Animal models for preclinical signaling of drug activity 
have been a cornerstone of drug development in oncology 
for decades. More recently, immune checkpoint blockade 
(ICB) has proven to be more translationally efficient than 
other treatments in previously resistant types of cancer 
such as melanoma and lung cancer [1]. ICB studies use 
syngeneic mouse models (SyMM) with intact immune 
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systems in contrast to other cancer therapeutics such as 
chemotherapy, which use xenografts in immunocompro-
mised mice [2, 3]. However, not all checkpoint inhibi-
tors have shown clinical benefit, and despite promising 
results in preclinical studies, this translational deficit is 
attributed to faults in experimental design addressing 
the internal and external validity [4–6]. Internal validity 
assures that any potential bias can be addressed via the 
experimental design, whereas external validity maximizes 
the potential to extrapolate the results from one set of 
experimental conditions to more clinically relevant ones 
[5, 6]. These two conditions are threatened by multiple 
flaws of experimental design, which have been summa-
rized and reviewed in a meta-analysis by Henderson et al. 
[4] and are presented in greater detail by Worp et al. [6].

The internal validity in preclinical studies is often 
jeopardized by the failure to implement standard pro-
cedures used in clinical trials, such as randomization to 
treatment, blinded assessment of outcome, and sample 
size determination. This leads to a potentially signifi-
cant effect or an overestimation thereof due to the pres-
ence of bias. In a meta-analysis of preclinical studies of 
sunitinib in xenografts, some of these measures were not 
implemented, which contributed to the over-estimation 
of treatment effects [7]. Other meta-analyses of preclini-
cal experiments also found this relationship between 
internal validity and treatment effect overestimation [8, 
9]. A different type of bias related to the reporting of the 
results occurs when the study results are negative, i.e., 
when no significant effect is detected. Thus, the literature 
is filled with positive preclinical results, which effectively 
leads to an overestimation of efficacy [10]. Thus far, nei-
ther the internal nor the potential publication bias in pre-
clinical studies of ICB have been characterized and hence 
it is difficult to determine whether the preclinical efficacy 
could be overstated.

On the other hand, the external validity characterizes 
the representation of key aspects of human disease and 
clinical trials in preclinical experiments, and thus ensur-
ing the applicability of results from the latter setting to 
the former [6]. These include, e.g., the matching of the 
clinical population age, sex and baseline state, the use 
of multiple tumor models to determine the therapeutic 
range, multiple species testing to account for differences 
in physiology and immunology as well as independ-
ent replication by other labs. However, preclinical stud-
ies have multiple shortcomings in the implementation 
of measures that maximize their translatability [5]. Par-
ticularly, the acknowledgement of potentially mean-
ingful sources of variation, such as baseline state (i.e., 
age, sex, tumor size, inclusion and exclusion criteria), 
or the laboratory the experiment was performed in, is 
missing in most studies [11, 12]. Furthermore, there is 

considerable heterogeneity in responses to ICB treat-
ments across SyMM, which might make some model-
dependent effects irrelevant for translational purposes 
[13]. However, the potential effect of these sources of 
variability on the interpretation of preclinical readouts 
and their relevance to clinical outcomes has not been 
addressed.

In this work, the published preclinical experiments of 
ICB treatments as monotherapy and in combination with 
chemo- and radiotherapy were gathered and analyzed to 
determine their potential biases and unaddressed sources 
of heterogeneity that might influence translational effi-
cacy in the clinic. Two efficacy measures, the hazard ratio 
(HR) and the median survival ratio (MSR), were the vari-
ables of interest from these studies. The potential internal 
bias and clinical extrapolation threats in these estimates 
were investigated to give a qualitative assessment on the 
implementation of measures that maximize the stud-
ies’ internal and external validity. The effect of adher-
ence to these measures was quantitatively derived from 
the comparison of efficacy measures between studies 
with and without these measures. The publication bias 
and its potential effect on the efficacy estimates was also 
addressed. Furthermore, the effect of multiple experi-
mental design variables on the heterogeneity between 
studies was analyzed to assess which contributed the 
most to this variability. Finally, the preclinical survival 
estimates were compared to clinical ones to determine 
whether there is any correspondence between the two 
sets of results.

Methods
Literature search and study selection
A search was conducted for studies that fit the following 
criteria: 1) preclinical mouse studies of ICB, 2) report of 
survival outcomes via survival curve estimates, 3) report 
of group sizes, and 4) report of control and monother-
apy groups. To collect the preclinical survival studies, 
a query was entered into PubMed using the following 
terms: checkpoint blockade OR checkpoint inhibitor OR 
CD279 OR CD274 OR CD152 OR CTLA-4 OR PD-1 OR 
PD1 OR PD-L1 OR PD-L1 AND animal model AND sur-
vival AND cancer NOT prophylactic NOT Clinical Study 
[Publication Type] NOT Review [Publication Type]. 
The time of publication was selected from 01.01.1997 – 
31.12.2018. The PRISMA flow diagram for the preclinical 
studies is shown in Fig. 1a.

For the clinical studies, a search was performed to find 
studies that met the following criteria: 1) clinical phase 
3 studies of ICB in cancer patients, 2) report OS or PFS 
HRs compared to either the placebo group or the stand-
ard of care group for monotherapies, or the monotherapy 
group for combination therapy, and 3) report of a measure 
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of uncertainty of the HRs. To collect the studies, a query 
was entered into PubMed using the following criteria: 
((immune checkpoint inhibitors[Pharmacological Action]) 
AND ((anti-PD-1) OR (anti-CTLA-4) OR (anti-PD-L1) OR 
(CD279) OR (CD152) OR (CD274) OR (ipilimumab) OR 
(tremelimumab) OR (nivolumab) OR (pembrolizumab) 
OR (avelumab) OR (atezolizumab) OR (durvalumab) OR 
(PD-L1) OR (PD-1) OR (CTLA-4)) AND ((randomized 
controlled trial[Publication Type]) OR ((randomized[Title/
Abstract]) AND (controlled[Title/Abstract]) AND 
(trial[Title/Abstract]))) AND ((phase 3[Title/Abstract]) 
OR (phase III[Title/Abstract])) AND (neoplasms[MeSH 
Major Topic])) AND (("2000/01/01"[Date—Publication]: 
"2020/12/31"[Date—Publication])). The time of publica-
tion was selected from 01.01.2000 – 31.12.2020. A total 
of 196 articles were found. These were filtered down to 40 
publications that reported the HR of overall survival (OS) 
and progression free survival (PFS) along with its uncer-
tainty estimate. These studies were complimented a query 
on the US National Clinical Trial database for phase III 
clinical trials with publications and results using the fol-
lowing criteria: Studies With Results | Interventional 
Studies | Cancer | "Anti-CTLA-4" OR "anti-PD-1" OR 
"anti-PD-L1" OR "ipilimumab" OR "tremelimumab" OR 
"nivolumab" OR "pembrolizumab" OR "avelumab" OR "ate-
zolizumab" OR "durvalumab" OR "PD-1" OR "PD-L1" OR 
"CTLA-4" OR "CD279" OR "CD274" OR "CD152" | Phase 

3 | Results first posted from 01/01/2000 to 12/31/2020. 
This resulted in 86 studies, which after removing dupli-
cates, screening, and assessing for eligibility resulted in 
22 studies included in the meta-analysis. The full clinical 
search strategy is depicted in the PRISMA flow diagram in 
Fig. 1b.

The retrieved studies were independently screened 
by two reviewers to eliminate articles that did not meet 
the inclusion criteria. For the qualitative assessment of 
internal and external validity threats to preclinical stud-
ies, all experiments were used. For the meta-analysis, 
publication bias assessment and heterogeneity analysis, 
experiments performed in genetically engineered mouse 
models (GEMM) were excluded. For the comparison to 
clinical estimates, only those experiments with a simi-
lar therapy in the clinic were used (i.e., anti-CTLA-4, 
anti-PD-1, anti-PD-L1, and two-way combinations with 
chemotherapy). In the case of clinical studies, all included 
studies were used for the analysis of potential publication 
bias, heterogeneity, and final meta-analysis to determine 
effect sizes.

Data collection
The data was collected by two reviewers indepen-
dently, any discrepancies were resolved by discussion to 
reach a consensus. From each preclinical study, survival 
curves from the control, monotherapy, and combination 

A) B)

Fig. 1 PRISMA flow diagram for the included studies. (A) PRISMA flow diagram for preclinical studies; (B) PRISMA flow diagram for clinical studies
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therapy groups were all digitized. In some cases, the 
control group was used multiple times in a single study 
for comparison to the treatment groups. Hence, only 
one curve of the control setting was extracted. In other 
cases, there are multiple control groups throughout the 
experiments, or the experiments are repeated result-
ing in a survival curve that is visibly different between 
the same experimental conditions. In such cases, their 
survival curves were also extracted. When an efficacy 
measure such as the HR or median survival is reported, 
these were also collected to compare to the calculated 
measures. Furthermore, several items from the design 
elements of preclinical studies were extracted, according 
to the recommendations in a previous systematic review 
of preclinical research guidelines [4]. At the study level, 
authors names, first author’s institutional affiliation, lab-
oratory where experiments took place, and the assess-
ment for translational applications were extracted. At the 
level of experimental design to minimize bias, the use of 
randomization to allocate animals to treatment groups, 
blinded assessment and group size calculation based on 
statistical power considerations were taken into consid-
eration. Other experimental design elements pertaining 
to the specifics of the experimental implementation such 
as cell line, initial tumor cell inoculum, site of inocula-
tion, treatment start day, dose, dose schedule, and route 
of administration were also collected.

For clinical datasets, the outcome variables collected 
were the OS HR as well as the PFS HR along with their 
confidence intervals. Additional variables related to the 
therapies included drug name, therapy combinations, 
cancer indication, dose, dosing frequency, control group, 
and Clinical Trials.gov identifier.

All preclinical datasets were extracted from the figures 
reported in either the main text or the Supplementary 
files using the WebPlotDigitizer app for Mac version 4–2. 
The.tar files documenting alignment of the data extracted 
with the original figures, as well as the.csv files of the 
extracted data are available upon request. The final data 
table with the efficacy measures and experimental design 
variables is available in the GitHub repository (Survi val 
Meta- Analy sis).

Data processing
The preclinical survival curves were back transformed 
into survival times by taking the unique survival esti-
mates from the survival curves and multiplying by the 
number of mice in each experiment. The output of this 
calculation is the size of the at-risk population at each 
unique event time point  (nit) and subtracting  nit-1 from 
 nit, the number of deaths at time t  (dt) are obtained. The 
survival times were then used to estimate the log median 
survival ratio (MSR) and log hazard ratio (HR) between 

treatment and control groups for each experiment. In 
the combination therapy, the control group was taken to 
be the least effective of the single therapies to mimic the 
clinical scenario where combination therapies are com-
pared to the monotherapy group. Furthermore, in some 
studies the start time of the survival curve denoted the 
start of treatment and not the implantation of the tumor 
in the host, therefore the survival times were shifted to 
reflect this lag, and in all studies, the time 0 was defined 
as the time of tumor implantation.

From each preclinical experiment, two efficacy meas-
ures were calculated, the Hazard Ratio (HR) and the 
Median Survival Ratio (MSR) [14] (See Supplementary 
Information). In some experiments the median survival 
was not reached. This occurred in 79 experiments (12%), 
of which 33 (5%) correspond to the therapies of interest 
in this study (namely, anti-CTLA-4, anti-PD-1, anti-PD-
L1 and their two-way combination with each other and 
with chemotherapy). For these cases, a predictive model 
was employed to impute this data, using the treatment, 
the control median survival, and the initial number of 
tumor cells as predictors (See Supplementary Informa-
tion for more details). All analyses run using the HRs 
were also performed with the MSRs, with the number 
of mice in treatment and control groups serving as an 
approximation to the MSRs’ uncertainty [14]. For qual-
ity control of the data gathering and processing, the cal-
culated efficacy measures were compared against the 
reported ones when available (Supplementary Fig. 1).

Data analysis
The collected preclinical studies were subjected to a 
qualitative analysis of internal and external validity 
threats to determine the risk of bias using Henderson’s 
et al. guidelines [4]. All preclinical studies that reported 
the evaluating criteria were considered for this analy-
sis. A meta-analysis was performed to determine the 
effect measures summaries (mean differences) for each 
outcome (HR and MSR) in each therapy. All preclinical 
studies that had more than two experiments for the same 
therapy were considered for this synthesis. Then, for each 
therapy, a trim-and-fill analysis was realized to deter-
mine whether there were any reporting biases. Only the 
experiments with the anti-CTLA-4, anti-PD-1, andi-PD-
L1, their two-way combinations and combination with 
chemotherapy were eligible for this analysis. To identify 
any potential factors systematically influencing the effi-
cacy readouts, a heterogeneity assessment was under-
taken using meta-regression. All treatments that had 
more than five experiments were used to have sufficient 
degrees of freedom given the number of free parameters 
to estimate. To evaluate the influence of the identified 
modifying factors, a sensitivity analysis was performed by 

https://github.com/jm-tenorio-pedraza/Survival-Meta-Analysis
https://github.com/jm-tenorio-pedraza/Survival-Meta-Analysis
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simulating different experimental designs. The estimates 
for the eligible therapies were used (anti-CTLA-4, anti-
PD-1, andi-PD-L1, their two-way combinations and com-
bination with chemotherapy). The preclinical estimates 
were compared to clinical ones in two manners: 1) using 
treatment-wise estimates of efficacy and 2) using treat-
ment-wise and cancer-specific predictions of efficacy. 
For this, only the estimates using a similar therapy to the 
clinical trials were used. In the case of clinical studies, all 
included studies were used for the analysis of potential 
publication bias, heterogeneity, and final meta-analysis to 
determine effect sizes.

Meta‑analysis
For each preclinical and clinical measure of efficacy, 
a univariate random effects linear model was fitted to 
estimate the overall efficacy and its uncertainty in every 
therapy (further details in Supplementary Information). 
The heterogeneity between studies was assessed by meta-
regression using different experimental design and con-
struct variables as potential explanatory variables [15]. 
The τ2 estimate of residual heterogeneity was derived 
using the restricted-maximum likelihood method [16]. 
The models were compared based on their estimate of 
the  R2, i.e. the proportion of heterogeneity captured by 
the model [14]. The p-values of the Cochran’s Q-test 
for heterogeneity were calculated to determine whether 
there was any significant residual variability between 
studies after fitting the model [17]. The Akaike Informa-
tion Criterion (AIC) was used to compare model fits and 
help guide model selection. All the available preclinical 
data after extraction was used for this analysis.

To investigate the potential publication bias, two 
methods were employed: the trim-and-fill analysis and 
the p-curve analysis. For the former, the dataset was par-
titioned based on treatment and for each subset a fun-
nel plot was produced [18, 19]. The funnel plot illustrates 
the number of potentially excluded studies that could 
have observed an effect in the opposite direction as the 
expected effect. The number of missing studies due to 
publication bias was determined using all available pre-
clinical data. The trim-and-fill analyses were repeated 
using the variables that explained the largest heteroge-
neity to split the data into more homogeneous datasets, 
and determine whether the potential publication bias 
could be explained by the heterogeneity between studies 
[19]. For this analysis, only those studies with more than 
one level of the factor variable were used. For all trim-
and-fill analyses, the R0 and L0 estimators were used to 
determine the number of missing studies [20]. For the 
p-curve analysis, the data from all the ICB treatments 
was used to determine whether there was evidential 
value of the presence of a true effect [21]. For this, the 

right-skewness test of the p-value distribution was used 
as described in [22].

Clinical translation
To determine whether the preclinical efficacy estimate 
was an accurate approximation of the corresponding 
clinical effect, the preclinical models were used to predict 
overall treatment effect and cancer-specific treatment 
effects. Firstly, to predict overall treatment effect, preclin-
ical and clinical models were matched based on the treat-
ment given. The compared estimates for both preclinical 
and clinical settings were derived from the models that 
only considered treatment as the significant modifier. A 
multiplicative model was used to describe the relation-
ship between the preclinical and clinical estimates to 
account for the range of the ratios:

A weighted generalized linear model with Gaussian 
errors and log-link function was fitted to the data using 
this mean model. For this, the preclinical estimates were 
log-transformed previously:

where β0 = log(η0) is the intercept, β1 is the γ exponent in 
Eq. (0.1). The weights were set to be the reciprocal of the 
variance estimates for the preclinical effects.

This model was fit to the clinical estimates for OS and 
PFS separately using the two preclinical estimates derived 
from the HRs and MSRs, which resulted in four regres-
sion models. Only the preclinical estimates for those 
therapies that have a clinical implementation were used 
for comparison. Under the assumption of no relation 
between preclinical and clinical estimates, the β1 coeffi-
cient is 0 and the corresponding p-value from a t-test is 
used to determine whether there is sufficient evidence to 
use preclinical estimate as predictors of clinical efficacy. 
A statistically significant β1 would represent the transla-
tion constant between preclinical and clinical efficacy 
estimates.

To assess the cancer-specific treatment effect pre-
dictions, the preclinical model using the MSR data was 
matched to the clinical data based on the combination 
of treatment and cancer type. For this, the preclinical 
models using treatment and cell line as modifiers were 
selected. Based on the cancer cell lines’ tissue of origin, 
they were matched with the corresponding human type 
of cancer using a matrix of weights with cell lines in 
the columns and cancer type in the rows. The weights 
were set so as have row sums equal to 1. The predic-
tions from this model were compared to the PFS and OS 
HRs and the mean squared error (MSE) was calculated. 

(0.1)ŷClinical = η0 ∗ ŷ
γ

Preclinical

(0.2)log yClinical = β0 + β1 · log yPreclinical
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Furthermore, the clinical models for each efficacy meas-
ure were subjected to a leave-one-out cross-validation to 
calculate the prediction error. This was compared to the 
prediction error derived from the preclinical model to 
assess how well it approximated the clinical data.

Model simulations
The modifiers identified in the heterogeneity assessment 
were further explored to determine the magnitude of 
their contribution to the uncertainty of treatment effects. 
To determine the optimal configuration of the number 
of sampled cell lines and labs to choose from, a series of 
designs were evaluated with respect to the MSE and the 
power to detect significant effects. The random-effects 
model was simulated using the preclinical estimates of 
efficacy derived from the model accounting for variabil-
ity due to cell line and lab effects, as well as the residual 
heterogeneity and the estimated cell- and lab-specific 
effects. A total of 60 different designs were proposed 
based on the combination of 1–6 different cell lines and 
1–10 different studies. For each experimental design, 
2000 simulations were generated in replicates of three 
and the estimated coefficients as well as p-values for the 
fixed effects were extracted. The estimated fixed effects 
from each artificial dataset were compared to the ‘true’ 
fixed effects to calculate the MSE.

Results
Internal and external validity threats are prevalent in most 
of the studies
Out of 226 records assessed for eligibility that met the 
inclusion criteria, 21 were excluded due to the sample 
size not being reported, other 33 were excluded since 
no survival was measured, and 1 was excluded due to 
its lack of monotherapies implemented. Other 11 pub-
lications in which the efficacy estimates could not be 
estimated were also excluded. 160 publications were 
selected based on the outlined criteria in the Methods 
section. These studies contain 616 experiments done in 
13,811 mice, evenly split between the control (52%) and 
treatment groups (48%). To evaluate the internal and 
external validity, a subset of threats to validity in the 
design of experiments according to Henderson et al. [4] 
is presented in Table  1. Several criteria were not met 
in most studies: only a little over a third of the stud-
ies (37%) randomized the subjects to treatment groups, 
and only 5% blindly assessed the outcome to therapy 
(Table 1). Likewise, the determination procedure of the 
sample size (e.g., via power assessment) was seldom 
addressed, and the majority had a small group size (the 
median number of mice per treatment group was 10 
(Table 2, Fig. 2). These flaws represent potential sources 
of bias in the assessment of therapeutic outcomes..

Furthermore, there were also weaknesses in the 
experiments’ construct validity. Most studies have a 
basic baseline characterization of the mouse popula-
tion (i.e., either the age, sex, tumor size or stage and 
the inclusion/exclusion criteria are described), with 
only 3% of all studies characterizing all four. Further-
more, there was a mismatch of the age group of mice 
and the clinical populations, since most experiments 
(93%) used young mice (between 8–12  weeks of age). 
Likewise, only 22 (4%) experiments used both male and 
female mice, 322 (52%) used female mice, and 74 (12%) 
used male mice, and 198 (32%) studies did not disclose 
this information. In clinical trials, however, both male 
and female subjects are included, albeit with a higher 
proportion of males [23, 24]. About half of the stud-
ies explicitly matched or justified the model relevance 
to clinical cancers, in terms of either similar driving 
mutations or similar mechanisms of disease progres-
sion. Finally, most studies (90%) characterized the 
mechanism of response to treatment by comparison 
of immune cell activity in treatment versus control 
groups.

Table 1 Study characteristics of preclinical immune checkpoint 
blockade experiments. Numbers in parentheses represent 
percentages of total number of studies

Total number of studies 160

Total number of mice 13,811

Internal validity
Randomization 60 (37) 

Sample size justification 13 (8) 

Blinded assessment of treatment effect 9 (6) 

Experimental flow 8 (5) 

Dose response 22 (14) 

Construct validity
Baseline characterization 5 (3) 

Disease match 80 (50)

Age match 11 (7) 

Mechanistic response to treatment 144 (90) 

External validity
Model replication 86 (54) 

Research purpose
Translational claim 133 (83) 

Table 2 Experimental characteristics of preclinical immune 
checkpoint blockade treatments

Experimental design characteristics Median (Range)

Mice per treatment group 10 (4–45)

Studies per treatment group 3 (1 – 79)

Cell lines per treatment group 3 (1–48)
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The external validity of these preclinical experi-
ments was limited in scope, since only half of the stud-
ies used more than one tumor model to investigate the 
response to treatment. Furthermore, there were no 
independent replicates by other research groups men-
tioned in any of them. Regardless of these flaws, 83% 
of the publications claim some translational property 
with regards to the clinical application of the investi-
gated drug or therapy.

Trim‑and‑fill analysis shows missing preclinical studies 
for the hazard ratio but not for the median survival ratio
To determine whether the internal or external valid-
ity threats influenced the overall preclinical estimates of 
efficacy, a mixed-effects model was fitted with treatment 
and each validity threat variable as factors. However, nei-
ther the randomization, blinded assessment of outcome 
nor the model replication had any significant effect on 
the estimates (HR p-values: 0.84, 0.90, 0.67; MSR p-val-
ues: 0.94, 0.2125, 0.8025, respectively).

Fig. 2 Experimental design characteristics. The figure shows the distribution of the design variables presented in Table 2



Page 8 of 18Tenorio‑Pedraza et al. Translational Medicine Communications            (2023) 8:17 

Next, the potential presence of publication bias was 
assessed using two methods: the trim-and-fill and the 
p-curve analyses. Both methods were employed on the 
two measures of efficacy, namely the HRs and MSRs, 
given their differences in distribution (Supplementary 
Fig.  2). The MSR had more efficacy estimates closer to 
the nonsignificant value of 1 in comparison to the HR, 
which had many estimates well below 1 and thus declared 
significant. This overdispersion could be due to the viola-
tion of the model assumptions of the HR calculated with 
the Cox proportional hazards model and the small num-
ber of mice used in the experiments (Table  2). For the 
trim-and-fill method, separate analyses were performed 
for each treatment due to the influence that inter-study 
heterogeneity can exert on the results. The results of this 
method are shown in Figs. 3 and 4. For the case of HRs, 
most treatments showed a significant number of missing 
studies, especially in the monotherapy groups (Fig.  3). 
This was not the case for MSRs, where apparently there 
is no publication bias in the clinically positive direction 
(Fig. 5). This discrepancy could be explained by the dif-
ference in the distribution in the data, as the HRs had a 
longer right tail and values clustered below the non-sig-
nificant value of 1 (Supplementary Fig.  2). On average, 
the treatment effect was overestimated by 12% in the HRs 
due to publication bias.

As previously stated, the trim-and-fill method can 
falsely output a number of missing studies when there 
is considerable inter-study heterogeneity [25]. For this 
reason, the p-curve analysis was employed, which uses 
the distribution of p-values derived from the hypotheses 
tests of the effect sizes [21]. This distribution is subjected 
to tests of right-skewness and flatness to determine 
whether the data contains evidential value, i.e., that the 
observed effect is not spurious due to p-hacking or data-
mining [26]. This analysis was performed on the subset of 
treatments of interest, namely anti-CTLA-4, anti-PD-1, 
anti-PD-L1, antiCTLA-4 and their two-way combina-
tions with each other and with chemotherapy. The curves 
for both efficacy measures, as well as the results of the 
right-skewness and flatness tests are shown in Fig. 5.

The p-curves for both measures indicate that there is 
evidential value in the preclinical data for the efficacy 
of ICB (test for right-skewness is significant). Thus, it is 
unlikely that there was any p-hacking or data mining to 
produce results that are statistically significant. Com-
bined with the previous analysis’ results, this indicates 
that, although there were some potential missing stud-
ies identified in the reporting of HRs, the reported stud-
ies that were statistically significant provided sufficient 
evidence of true efficacy. In the following section, the 
potential influence of inter-study heterogeneity on the 
potential missing studies will be explored.

The effects of the study and cell line explain the most 
variation in preclinical treatment effects
To identify potential sources of variability between stud-
ies of the same treatment, several experimental design 
variables were considered based on published knowledge 
of their impact on treatment effect. These included the 
cell line [13], sex [27] treatment start day [28, 29], and site 
of tumor injection [30]. Other design variables of inter-
est included the dose and number of initial tumor cells 
injected. Additionally, the internal validity variables qual-
ifying the randomization and blinded assessment were 
considered too. Finally, the variables for the institute, 
lab, and publication study in which the experiments were 
performed and reported were also included (Table 3).

The model with only treatments as modifiers explained 
48% of the variability in MSRs and 15% in HRs. Only the 
study combined with the treatments could completely 
explain the heterogeneity between experiments in the 
MSRs; in the HRs, these variables explained 46% of the 
observed heterogeneity. Although none of the random 
effects in combination with the treatments completely 
explained the heterogeneity in HRs, the cell line, insti-
tute, and lab explained the greatest percentages of the 
variability in HRs (Table 3). Although the dose itself was 
not a significant factor for explaining inter-study hetero-
geneity, the possible existence of a dose–response rela-
tionship was further examined for the monotherapies of 
anti-CTLA-4, anti-PD-1, and anti-PD-L1 (Supplemen-
tary Figs.  3 and 4). However, there was no significant 
association between the dose (mg/kg) and the effect size 
in either measure of efficacy for any therapy.

Furthermore, there was considerable residual hetero-
geneity in the model fitted to the HRs, which could not 
be further reduced by including the study and cell line 
as modifiers in the same model (HRs: p-value: < 0.0001). 
This heterogeneity could potentially have an effect on the 
previous assessment of publication bias [19]. To deter-
mine whether the residual heterogeneity could explain 
the publication bias previously identified, the dataset 
was partitioned into subsets according to the variables 
that accounted for the largest percentages of variabil-
ity between studies, namely the cell and the study. Only 
subsets with more than two observations were kept, and 
therefore some cell lines or studies with only one esti-
mate were not included in this analysis. The mixed effects 
models were fit to the HRs in each of these subsets and 
the trim-fill method was implemented to determine 
whether in these more homogeneous datasets there were 
still potentially missing studies. Although the estimates 
changed between the different subsets for all treatments, 
there were still a significant and equivalent number of 
missing studies in each subset compared to the whole 
dataset (Supplementary Figs. 5 – 10). Thus, it is unlikely 



Page 9 of 18Tenorio‑Pedraza et al. Translational Medicine Communications            (2023) 8:17  

that the potentially omitted studies were a product of 
inter-study heterogeneity.

Furthermore, most of the studies used only one tumor 
cell line to quantify treatment effect (Table 2) and there-
fore the obtained estimate is particularly susceptible to 
variation stemming from either the cell or study variables. 
To understand how the experimental choices of these 
two factors contributed to the accuracy and precision of 

the HR and MSR estimates, a simulation experiment was 
performed. With this purpose, the model estimates of the 
treatment effects as well as the cell and study effects were 
used to randomly generate artificial datasets with differ-
ent combinations of cell lines (1–6 different cell lines) 
and studies (1–10 different studies). This constituted 60 
different experimental designs, simulated in replicates of 
3, with 2000 datasets for each design. Overall, 360,000 

Fig. 3 Funnel plots of log‑HRs in preclinical experiments of ICB. For each treatment, a trim‑and‑fill analysis was conducted to determine 
the number of missing studies due to potential publication bias. The black dots represent missing studies, and the red dotted line the adjusted 
estimate taking those missing experiments into consideration. Figure shows a subset of treatments from the total 53 of preclinical therapies
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simulations were run and from each simulation, the 
treatment effects and the p-value were extracted. From 
these, the mean squared error (MSE) with respect to the 
overall estimated treatment effects (Fig. 6) and the power 
to detect a significant effect (Supplementary Figs. 11 and 
12) were calculated for each treatment.

In the HRs, the MSE showed significant variation 
between treatments consistently over all experimen-
tal designs, with the combination for anti-CTLA-4 and 

anti-PD-L1 having the largest MSE. The combination 
of chemotherapy with either anti-PD-1 and anti-PD-
L1 showed the smallest MSE among all treatments. 
Interestingly, for all treatments, the MSE only stabi-
lized when using 6 cell lines and 3 studies. In contrast, 
the MSE from MSRs were much smaller compared to 
the HRs’ MSE and, for all treatments, there was a steep 
descent in MSE when using 3 studies and anywhere 
from 2–4 cell lines.

Fig. 4 Funnel plots of log‑MSRs in preclinical experiments of ICB. For each treatment, a trim‑and‑fill analysis was conducted to determine 
the number of missing studies due to potential publication bias. The black dots represent missing studies, which in this setting only two were 
found. Figure shows a subset of treatments from the total 53 of preclinical therapies
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For all treatments, the statistical power lay above 0.8 for 
all combinations of the random effects in both HRs and 
MSRs. Thus, the probability to detect a statistically sig-
nificant effect was sufficient even for designs with one cell 
line and one study only (Supplementary Figs. 11 and 12).

Clinical efficacy estimates show heterogeneity, partially 
explained by the cancer type
Clinical phase III studies of ICB as monotherapy or 
combination therapy were collected based on the 
strategy outlined in the Methods section. Like in the 
preclinical setting, a univariate random effects lin-
ear model was fitted to the clinical data to analyze the 
potential publication bias and heterogeneity between 
studies. In the OS HRs, there was a potential publica-
tion bias present as well, especially in the anti-PD-1 
therapy (Supplementary Fig.  13). Although the rest of 
the treatments did not exhibit a potentially large pub-
lication bias, the small number of points used for the 
analyses preclude any meaningful assessment. How-
ever, in the PFS HRs, there was no significant potential 
omission of any studies (Supplementary Fig.  14). Fur-
thermore, the p-curve analysis also provided evidential 
value for the presence of a true effect in both efficacy 
measures (Supplementary Fig. 15).

The treatment-specific effects in clinical studies were 
estimated similarly to the preclinical setting, testing vari-
ous modifiers to determine potential sources of hetero-
geneity between studies. Although the cancer type could 
explain some of the heterogeneity in both OS and PFS 
HRs  (R2 = 46 and 36%, respectively), there was still resid-
ual variability between studies (p-value = 0.0008, < 0.0001) 

Fig. 5 p‑curve analysis plots of log‑HRs (A) and log‑MSRs (B) in preclinical experiments of ICB. For each treatment, a p‑curve analysis 
was conducted to determine the number of missing studies due to potential publication bias. Figure shows a subset of treatments from the total 
53 of preclinical therapies: anti‑CTLA‑4, anti‑PD‑1, anti‑PD‑L1, anti‑CTLA‑4 + anti‑PD‑1, anti‑CTLA‑4 + anti‑PD‑L1, anti‑CTLA‑4 + Chemotherapy, 
anti‑PD‑1 + Chemotherapy, and anti‑PD‑L1 + Chemotherapy

Table 3 Assessment of heterogeneity in efficacy measures of 
preclinical ICB experiments

Modifier Log‑HRs Log‑MSRs

AIC R2 AIC R2

Study 991 46 329 99

Lab 1004 39 274 78

Institute 1016 34 235 65

Strain 1050 17 31 64

Cell 1025 28 224 57

Number of tumor cells injected 1047 17 25 52

Day of treatment start after tumor 
inoculation

1052 15 27 51

Cancer type 1038 20 86 50

Sex 1043 15 37 48

Randomization 1055 14 31 48

Blinded assessment 1055 15 32 48

Site of injection 1057 13 47 47

Route of administration 1036 22 59 47

Dose 1050 15 33 47
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(Table  4). In both measures, the variability could be 
reduced by additionally including the type of masking as a 
modifying variable (for OS:  R2 = 70.25%, p-value = 0.0415) 
(for PFS:  R2 = 73.53%, p-value =  < 0.0001), but there was 
still residual heterogeneity.

The preclinical model predictions of clinical efficacy 
approximated the observed estimates in a cancer 
and treatment‑specific manner
The overall preclinical treatment effect estimates for both 
efficacy measures of survival were compared to the over-
all clinical treatment effects estimates of the OS and PFS 
HRs. For this, the treatment effects were estimated from 
the model using only the treatments as the relevant mod-
ifiers for each efficacy measure in both preclinical and 
clinical settings. Comparing the preclinical to the clinical 
fixed effects, there was a clear overestimation of the latter 

by the former for HRs: The preclinical HRs overestimated 
the clinical OS and PFS HRs by 65% on average. In MSRs, 
there was a slight overestimation of effect in a few of the 
treatment estimates, but on average, this overshoot was 
mild in comparison (8–12%). Furthermore, for the fixed 

Fig. 6 Mean squared error from experimental designs of ICB treatments. Results from the simulation experiments of 60 experimental designs 
with 500 simulations per design and 3 replicates per simulation. Shown are the resulting mean squared errors with respect to the estimated 
treatment effects for either (A) the HRs or the (B) MSRs. Each panel represents the number of cell lines used

Table 4 Heterogeneity assessment in clinical studies of immune 
checkpoint inhibitors. The Akaike Information Criterion (AIC) and 
the percentage of heterogeneity explained by each modifier  (R2) 
are shown for each model

Modifier Log‑OS HRs Log‑PFS HRs

AIC R2 AIC R2

Cancer type ‑8.134 46% 51.85 37%

Therapeutic agent(s) 22.17 0% 65.08 12%

Type of masking ‑30.38 27% 45.8 46%
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effects of interest, there was a lack of association between 
preclinical and the clinical estimates since both measures 
of preclinical efficacy failed to predict the observed drug 
effects in OS (Supplementary Figs.  16 and 17) and PFS 
(Fig. 7 and Supplementary Fig. 18). The t-test for the rela-
tionship between the preclinical and clinical estimates for 
all comparisons, i.e., that γ was not significantly different 
than 0, did not generate any significant results: preclini-
cal HR vs. clinical OS HR, p-value = 0.83; preclinical HR 
vs clinical PFS HR: p-value = 0.66; preclinical MR vs clini-
cal OS HR, p-value = 0.08; preclinical MR vs clinical PFS 
HR: p-value = 0.58.

The preclinical estimates from MSRs showed large uncer-
tainty in some treatments (anti-CTLA-4 + anti-PD-L1, anti-
CTLA-4 + Chemotherapy, and anti-PD-L1 + Chemotherapy), 

partly due to the small number of studies for those therapies 
(Table 5). However, for the treatments with higher precision, 
such as in anti-CTLA-4, anti-PD-1, anti-PD-L1, and anti-
CTLA-4 + anti-PD-1, the preclinical estimates were quite 
close to the clinical OS HRs estimates. In the case of preclini-
cal HRs, they were consistently more favorable than the clini-
cal estimates. Additionally, in most treatments the prediction 
intervals derived from preclinical data were completely out 
of range of the estimated clinical confidence intervals; only 
in the combination of anti-CTLA-4 with anti-PD-1, and the 
combinations of anti-CTLA-4 and anti-PD-1 with chemo-
therapy there was some agreement. However, this overlap 
seemed to be due to the large uncertainty in preclinical esti-
mates rather than a partial agreement with the clinical effi-
cacy estimate.

Fig. 7 Comparison of preclinical vs. clinical PFS fixed effects of ICB therapies. The preclinical (MSR) and clinical (PFS HR) estimates 
from the meta‑analyses for each treatment were plotted against each other (dots) along with their 95% confidence intervals. The red dotted line 
represents the slope of the regression passing through the origin of the clinical efficacy estimates on the preclinical ones and its 95% confidence 
interval. The black dotted line represents the perfect correspondence between preclinical and clinical estimates of efficacy. This figure corresponds 
to the data presented in Table 5
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The next question was whether cancer-type specific 
predictions could improve the prediction of the observed 
clinical effects. For this, the preclinical models for both 
efficacy measures with the treatments and cell lines as 
modifiers were used to predict efficacy in various clini-
cal trials of ICB. As described in the Methods section, the 
preclinical models were used to generate cancer type spe-
cific predictions of clinical efficacy (see Supplementary 
Table 1). These were matched to the clinical OS and PFS 
HRs observed in multiple trials of ICB and the prediction 
MSE was compared to the leave-one-out cross-validation 
(LOO CV) MSE derived from the clinical model. For 
both types of clinical efficacy, the prediction MSE was 
close to the cv MSE when using the model trained with 
the MSR (Table  6 and Supplementary Figs.  19 and 20). 
There was a large bias in the predictions derived from 
preclinical HRs, in which all consistently produced more 
favorable results than the ones observed in the clinic 
(Supplementary Figs. 21 and 22).

Discussion
The relevance of preclinical results for translational pur-
poses in clinical efficacy has been a topic of debate due 
to the concerns regarding the internal and external valid-
ity of the experiments. In general, the lack of bias con-
trol strategies in experimental design generates efficacy 

estimates with a larger magnitude in the clinically posi-
tive direction than would be expected when controlling 
for bias. The studies of ICB examined here exhibited 
design flaws that made them vulnerable to internal and 
external validity threats in the prevention of bias.

Internal validity
The internal validity of many studies was threatened by 
the lack of randomization, blinded assessment, sample 
size determination and optimal dose finding. This is not 
limited to preclinical studies in ICB, but is a larger issue 
across multiple therapeutic fields [6–9]. Furthermore, 
sample size and dose finding were seldom addressed, and 
most studies used a small number of mice with a prede-
termined dosing regimen. However, the inter-individual 
variation in mice was shown to be a relevant factor in 
the response to treatment for different immunothera-
pies, even for mice with similar genetic backgrounds and 
housing conditions [31, 32]. Thus, finding a sample size 
that contemplates this source of variation is key in mini-
mizing the estimates’ bias. It is likely that the preclinical 
bias in efficacy estimates contributed to the difference 
between the individual preclinical and clinical efficacy 
estimates. Nevertheless, other sources for this discrep-
ancy also include the differences between species and 
the threats to construct validity, i.e., the choice of con-
trol groups in animal vs human studies. Further studies 
with unbiased estimates of preclinical studies could bet-
ter assess the contribution of each of these factors to the 
overestimation of clinical efficacy.

External validity
In preclinical experiments of ICB, the external validity 
was threatened by the lack of multiple tumor models and 
animal species tested, as well as flaws in the construct 
validity (i.e., matching of age, disease mechanism, and 
baseline characterization to clinical patients). Specifically, 

Table 5 Preclinical (MSR and HR) and clinical (OS and PFS HR) estimates of survival efficacy. LB: lower bound; UB: upper bound

Treatment Preclinical MSRs Preclinical HRs Clinical OS HRs Clinical PFS HRs

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

LB UB LB UB LB UB LB LB

Anti‑CTLA‑4 0.82 0.78 0.86 0.30 0.17 0.53 0.88 0.76 1.01 0.76 0.54 1.08

Anti‑PD‑1 0.84 0.80 0.88 0.31 0.18 0.55 0.77 0.73 0.82 0.89 0.79 1.00

Anti‑PD‑L1 0.83 0.79 0.87 0.30 0.17 0.54 0.86 0.79 0.93 1.04 0.87 1.23

Anti‑CTLA‑4 + anti‑PD‑1 0.82 0.75 0.89 0.36 0.20 0.66 0.71 0.62 0.81 0.64 0.45 0.90

Anti‑CTLA‑4 + anti‑PD‑L1 0.79 0.67 0.93 0.36 0.20 0.66 0.87 0.74 1.03 1.03 0.73 1.46

Anti‑CTLA4 + Chemotherapy 0.80 0.54 1.20 0.31 0.10 0.99 0.87 0.75 1.01 0.86 0.57 1.30

Anti‑PD‑1 + Chemotherapy 0.63 0.53 0.76 0.17 0.08 0.38 0.73 0.66 0.82 0.69 0.55 0.87

Anti‑PD‑L1 + Chemotherapy 0.86 0.58 1.25 0.20 0.07 0.60 0.82 0.73 0.91 0.71 0.56 0.88

Table 6 Prediction MSE from the clinical and preclinical models. 
The leave‑one‑out cross‑validation error is shown for the clinical 
model. For the preclinical models, the errors derived from the 
cancer‑type specific predictions of the corresponding measures 
of clinical efficacy are shown for each of the preclinical variables 
considered (MSR and HR)

Model OS HR MSE PFS HR MSE

Clinical CV 0.0184 0.0836

Preclinical MSR 0.0221 0.0901

Preclinical HR 0.1181 0.2595
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there was large variation in efficacy measures due to the 
cell line and study in which the experiments were per-
formed. The simulations with different experimental 
designs allowed for the identification of optimal combi-
nations of the number of cell lines and studies to obtain 
reliable preclinical efficacy estimates. For MSRs, a com-
bination of 2 cell lines and 3 studies was adequate, how-
ever, for HRs, a combination of 6 cell lines and 3 studies 
was required for MSE minimization. A different study 
found similar effects of the lab on the effect size esti-
mates, and via simulation came to a recommendation of 
2–4 labs to fully account for the inter-lab variability [12]. 
Although not explored in this work, the within-study 
sampling error is another potential source of significant 
variation between efficacy estimates. A way to tackle this 
is through multi-batch experiments, which minimize the 
contribution of unaccounted sources of variability to the 
effect size estimate [33].

Another source of bias was the outcome measure cho-
sen to compare the treatment groups. In this meta-analy-
sis, all studies used the logrank test to determine whether 
the treatment effect is statistically significant in improv-
ing survival with respect to the control group. In the case 
of two-way comparisons, the logrank test is equivalent 
to the test for the HR from the Cox proportional hazards 
model [34]. This model quantifies the relative hazard of 
observing an event (e.g., death) between two different 
groups. However, some of the key assumptions of the 
model, such as non-zero survival curves and proportion-
ality between baseline hazard and the treatment-related 
hazard, were violated in preclinical experiments. This led 
to HR estimates with large bias, which, compared to the 
log MSR, were worse at approximating the human clini-
cal efficacy. The MSR on the other hand had a smaller 
bias and was better at approximating the observed clini-
cal efficacy estimates.

Clinical translation
There are differences between species that some have 
claimed to be insurmountable for the purpose of extrapo-
lating the results to the clinic [5]. Particularly in cancer 
immunotherapy there are differences in immune sys-
tem functions [35], in the monoclonal antibodies used 
in humans versus mice [36], in disease progression [13], 
among others. Assessing how significant these differ-
ences are towards predicting clinical efficacy is non-
trivial, not only because of the complexity of the immune 
response but also due to the variation between individu-
als and tumor models [13, 37, 38]. Indeed, when compar-
ing the group of overall preclinical efficacy estimates to 
their clinical counterparts, there was almost no associa-
tion in most comparisons. In fact, there was only a weak 
association between the MSR and PFS HRs, which means 

that the overall preclinical estimates of efficacy could 
not be used to predict overall clinical outcomes for the 
treatments considered here. However, it should be noted 
that a small sample size was available due to the reduced 
number of therapies currently implemented in the clinic. 
Thus, it cannot be concluded that there is no associa-
tion between preclinical and clinical efficacy estimates 
for any possible treatment, only for those here examined. 
As more combinations of ICB are tested in the clinic, 
this model could be revisited in the future to give a bet-
ter assessment. On the other hand, the cancer-specific 
predictions of treatment efficacy were better approxima-
tions of the observed clinical effect. The prediction error 
was close to the cross-validation error from the clinical 
model, thus making the preclinical model trained with 
MSR data useful for predicting clinical efficacy in ICB tri-
als given the current knowledge. However, it should be 
noted that the clinical model had significant residual het-
erogeneity that could not be explained by any of the con-
sidered variables. Indeed, other studies have identified 
other factors as relevant in the efficacy, e.g., the muta-
tional landscape of the tumor, PD-L1 status, and intra-
tumor immune cell composition [39–42]. In this study, 
the efficacy data was from the intention-to-treat group 
in each study, hence these factors could vary significantly 
between study groups and potentially explain the residual 
heterogeneity of the model. Although the residual heter-
ogeneity might put into question the validity of the clini-
cal model for both measures, it is still useful in describing 
the effect of the cancer type and treatment in the effi-
cacy estimate. Further work should focus on incorpo-
rating those relevant factors affecting clinical efficacy to 
improve both the preclinical and clinical models.

Study limitations
This is not a systematic review of the up-to-date litera-
ture in preclinical and clinical studies, and a significant 
number of more recent preclinical experiments was left 
out for this meta-analysis. Another important limitation 
of this study is that it mostly focused on SyMM, thus it 
remains unknown how adequate other mouse models 
such as GEMM and humanized mice are at approximat-
ing human clinical efficacy in ICB. Furthermore, although 
dose was used in the examination of possible sources of 
heterogeneity between preclinical studies, there was con-
siderable variability in the dose frequency and duration 
of treatment between studies. Therefore, the effect of 
dose scheduling needs to be further evaluated. Similarly, 
in the clinical meta-analysis only the drug type was con-
sidered to summarize treatment effect, but there was var-
iation in doses, especially for ipilimumab (anti-CTLA-4 
drug: 3  mg/kg – 10  mg/kg) which has shown to influ-
ence its efficacy [43]. In both the preclinical and clinical 
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meta-analyses, the different mAbs types were combined 
to estimate the treatment effect based on the drug type, 
i.e., anti-PD-1, anti-PD-L1 and anti-CTLA-4. This was 
implemented to compare between preclinical and clini-
cal estimates more easily. In the clinic, other meta-anal-
ysis have found no significant differences in OS or PFS 
for PD-1 and PD-L1 mAbs [44, 45]. However, the mouse 
mAbs for the same target have shown variation of effect, 
partly due to the IgG type [46, 47]. Finally, different mAbs 
were used in the mouse experiments and the clinic due to 
the lack of cross-reactivity, which have shown additional 
effects to receptor blockade (i.e. effector cell depletion) 
affecting their efficacy [36].

Conclusions
Overall, the preclinical experiments had several flaws 
in the minimization of threats to internal and external 
validity. These had marked effects on the estimates of 
preclinical efficacy by making them more favorable than 
would be expected in a better experimental design. Fur-
thermore, the most used preclinical efficacy measure 
(HR) also skewed the efficacy towards a more clinically 
positive direction. A different measure (MSR) should be 
used to avoid such bias, as it was shown to be more pre-
dictive of clinical efficacy when considering various cell 
types that can be matched to their respective human can-
cer type.
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