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differentially expressed between two or more conditions. 
However, this approach does not take into account the 
relationships between genes and their functions.

Deconvolution is a recently developed method that 
addresses this issue by deconvolving RNA-seq data into 
cell-type-specific expression profiles.

In this article, we will explore the concept of deconvo-
lution and its applications in understanding complex bio-
logical systems.

Deconvolution of RNA-seq data
RNA sequencing (RNA-seq) is a powerful tool for study-
ing gene expression and transcriptome profiling. How-
ever, the analysis of RNA-seq data can be challenging due 
to the complexity of the data and the presence of vari-
ous sources of noise. Deconvolution is a computational 

Introduction
RNA sequencing (RNA-seq) has revolutionized the field 
of transcriptomics by providing a comprehensive view 
of gene expression at the transcript level. However, ana-
lyzing RNA-seq data can be challenging due to its high 
dimensionality and complexity.

One common approach is to perform differential 
gene expression analysis, which identifies genes that are 
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Abstract
Deconvolution of RNA sequencing data is a computational method used to estimate the relative proportions of 
different cell types or subpopulations within a heterogeneous sample based on gene expression profiles. This 
technique is particularly useful in studies where the goal is to identify changes in gene expression that are specific 
to a particular cell type or subpopulation.
The deconvolution process involves using reference gene expression profiles from known cell types or 
subpopulations to infer the relative abundance of these cells within a mixed sample. This is typically done using 
linear regression or other statistical methods to model the observed gene expression data as a linear combination 
of the reference profiles.
Once the relative proportions of each cell type or subpopulation have been estimated, downstream analyses can 
be performed on each component separately, allowing for more precise identification of cell-type-specific changes 
in gene expression.
Overall, deconvolution of RNA sequencing data is a powerful tool for dissecting complex biological systems and 
identifying cell-type-specific molecular signatures that may be relevant for disease diagnosis and treatment.

Keywords  Deconvolution techniques, RNA-seq data analysis, Differential gene expression analysis, Transcriptome 
profiling, CIBERSORT, xCell, MCP-counter

Unraveling the complexity: understanding the 
deconvolutions of RNA-seq data
Kavoos Momeni1* , Saeid Ghorbian1, Ehsan Ahmadpour2 and Rasoul Sharifi3

http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-6976-9430
http://crossmark.crossref.org/dialog/?doi=10.1186/s41231-023-00154-8&domain=pdf&date_stamp=2023-9-26


Page 2 of 8Momeni et al. Translational Medicine Communications            (2023) 8:21 

method that can be used to separate different sources of 
variation in RNA-seq data, such as cell type-specific gene 
expression or batch effects.

Deconvolution is a mathematical technique that aims 
to estimate the underlying components of a mixture 
based on their observed signals. In RNA-seq data, decon-
volution can be used to estimate the relative contribu-
tion of different cell types or biological processes to the 
observed gene expression profiles. The basic idea behind 
deconvolution is to use a reference dataset that contains 
known expression profiles for each component of inter-
est, and then estimate the contribution of each compo-
nent to the observed data using linear regression or other 
statistical methods.

One common application of deconvolution in RNA-
seq data analysis is cell type-specific gene expression 
analysis. In many tissues and organs, different cell types 
have distinct gene expression profiles that reflect their 
specialized functions. However, bulk RNA-seq experi-
ments often measure gene expression from a mixture of 
multiple cell types, which can obscure cell type-specific 
signals. Deconvolution can be used to estimate the rela-
tive abundance of each cell type in a mixed sample based 
on their known gene expression profiles. This approach 

has been applied to various tissues and diseases, such as 
brain tumors [1], immune cells [2], and lung cancer [3].

Another application of deconvolution in RNA-seq 
data analysis is batch effect correction. Batch effects are 
systematic variations in gene expression that arise from 
technical factors such as sample preparation or sequenc-
ing runs. Batch effects can confound the analysis of RNA-
seq data and lead to false positive or negative results. 
Deconvolution can be used to estimate the batch effect 
from a reference dataset that contains samples with 
known batch labels, and then adjust the observed gene 
expression profiles accordingly. This approach has been 
shown to improve the accuracy and reproducibility of 
RNA-seq data analysis [4, 5].

As RNA-seq data continue to grow in size and com-
plexity, deconvolution will become an increasingly 
important tool for understanding gene expression regula-
tion in health and disease (Fig. 1).

Advantages of deconvolution over traditional gene 
expression analysis methods
Deconvolution is a computational method that has 
gained popularity in recent years for analyzing gene 
expression data. It is a powerful tool that allows 

Fig. 1  In RNA-seq deconvolution, a biopsy is obtained and subjected to RNA sequencing and Differential Gene Expression analysis. The resulting data is 
then processed using deconvolution algorithms and combined with prior knowledge from cell genomes. Through this analysis, the number and charac-
teristics of cells within the tissue can be calculated
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researchers to estimate the cell-type-specific gene 
expression profiles from bulk tissue samples. Traditional 
gene expression analysis methods, on the other hand, rely 
on the assumption that all cells in a sample have similar 
gene expression profiles.

One of the main advantages of deconvolution is its abil-
ity to identify cell-type-specific changes in gene expres-
sion. In traditional gene expression analysis methods, it 
is difficult to distinguish between changes in gene expres-
sion that are due to changes in the proportion of different 
cell types and changes in gene expression within indi-
vidual cells. Deconvolution allows researchers to separate 
these two sources of variation and identify genes that are 
specifically upregulated or downregulated in certain cell 
types. This can provide valuable insights into how differ-
ent treatments or interventions affect specific cell types 
and help researchers develop more targeted therapies [6, 
7].

Another advantage of deconvolution is its ability to 
identify rare cell populations. In many tissues, there are 
small populations of cells that play important roles in dis-
ease progression or tissue regeneration. These rare cell 
populations can be difficult to detect using traditional 
gene expression analysis methods because their signal 
may be drowned out by the more abundant cell types. 
Deconvolution can help researchers identify these rare 
cell populations and study their role in disease or tissue 
regeneration [8].

Deconvolution also allows for more accurate interpre-
tation of results from bulk tissue samples. Traditional 
gene expression analysis methods assume that all cells 
within a sample have similar gene expression profiles, 
which may not be true for complex tissues such as tumors 
or immune tissues. Deconvolution can help researchers 
identify which genes are expressed by which cell types 
within a sample, allowing for more accurate interpreta-
tion of results [9].

Deconvolution can be used to identify new biomark-
ers for disease diagnosis and prognosis. Traditional gene 
expression analysis methods are limited in their ability 
to identify biomarkers that are specific to individual cell 
types. Deconvolution overcomes this limitation by allow-
ing researchers to identify biomarkers that are specific to 
individual cell types and can be used for disease diagnosis 
and prognosis [10].

Finally, deconvolution can be used to study complex 
biological processes such as immune responses or tis-
sue regeneration. These processes involve multiple cell 
types with distinct functions and gene expression pro-
files. Deconvolution can help researchers understand 
how different cell types interact and contribute to these 
processes [11]. Cancer is a complex disease that involves 
multiple different cell types. Deconvolution can be used 
to identify the specific cell types that are involved in 

cancer development and progression and to identify 
the specific genes that are expressed in these cell types. 
This can provide valuable insights into cancer develop-
ment and progression mechanisms and help researchers 
develop more effective treatments [12].

Deconvolution allows researchers to identify cell-
type-specific changes in gene expression, identify rare 
cell populations, interpret results from bulk tissue sam-
ples more accurately, and study complex biological pro-
cesses. As such, it has become an essential tool for many 
researchers studying gene expression in complex tissues.

Limitations of deconvolution of RNA-seq data
Deconvolution of RNA-seq data is a computational 
method that aims to estimate the cell type-specific gene 
expression profiles from bulk RNA-seq data. However, 
there are several limitations to this approach, including 
technical and biological factors that can affect the accu-
racy and reliability of the results.

One major limitation of deconvolution is the lack of 
reliable cell type-specific markers. The identification of 
cell type-specific markers is crucial for accurate estima-
tion of gene expression profiles in different cell types. 
However, many cell types share common markers, and 
some markers may be expressed in multiple cell types, 
leading to inaccurate estimates. Moreover, some cell 
types may have low expression levels or be rare in the 
sample, making it difficult to accurately estimate their 
gene expression profiles [8].

Another limitation is the heterogeneity within cell 
types. Even within a single cell type, there can be signifi-
cant heterogeneity due to differences in developmental 
stage, activation state, or environmental cues. Failure to 
properly address heterogeneity can lead to several issues. 
For instance, it can result in overestimation or underes-
timation of gene expression levels for specific cell types 
or subpopulations. This can have significant implications 
for downstream analyses, such as understanding disease 
mechanisms, identifying biomarkers, or developing tar-
geted therapies [13].

Technical factors such as batch effects and sequenc-
ing depth can also affect the accuracy of deconvolution 
results. Batch effects arise when samples are processed 
at different times or by different technicians, leading to 
systematic differences in gene expression levels that are 
not related to biological variation. Sequencing depth can 
also affect the accuracy of deconvolution results since 
low coverage may result in inaccurate estimates of gene 
expression levels [14].

Finally, deconvolution assumes that all genes are 
expressed independently across different cell types. How-
ever, this assumption may not hold true for all genes 
since some genes may be co-regulated or co-expressed 
across multiple cell types [15].
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In conclusion, while deconvolution is a useful tool for 
estimating cell type-specific gene expression profiles 
from bulk RNA-seq data, it has several limitations that 
must be considered. These limitations include the lack of 
reliable cell type-specific markers, heterogeneity within 
cell types, technical factors such as batch effects and 
sequencing depth, and the assumption of independent 
gene expression across different cell types. Therefore, 
careful consideration of these factors is necessary when 
interpreting deconvolution results.

Using deconvolution of RNA-seq data to identify new 
biomarkers for disease diagnosis
Deconvolution of RNA-seq data has emerged as a prom-
ising approach to address this challenge and identify new 
biomarkers for disease diagnosis.

Deconvolution is a computational method that sepa-
rates mixed signals into their individual components. 
In the context of RNA-seq data, deconvolution can 
be used to separate the expression profiles of different 
cell types or tissues within a sample. This approach has 
been applied to identify biomarkers for various diseases, 
including cancer, autoimmune disorders, and neurologi-
cal disorders [16].

One example of using deconvolution to identify bio-
markers is in the study of breast cancer. Breast cancer is 
a heterogeneous disease with different subtypes that have 
distinct molecular characteristics and clinical outcomes. 
Deconvolution of RNA-seq data from breast cancer 
samples can be used to identify the expression profiles of 
different cell types within the tumor microenvironment, 
such as immune cells and stromal cells. By comparing 
these profiles between different subtypes of breast can-
cer, researchers can identify genes that are specifically 
expressed in certain cell types and may serve as biomark-
ers for diagnosis or prognosis [8].

Another example is in the study of autoimmune disor-
ders such as rheumatoid arthritis (RA). RA is character-
ized by chronic inflammation in the joints, which leads to 
joint damage and disability if left untreated. Deconvolu-
tion of RNA-seq data from RA patients can be used to 
identify genes that are specifically expressed in immune 
cells that are involved in the pathogenesis of RA, such as 
T cells and B cells. These genes may serve as biomarkers 
for early diagnosis or monitoring of disease activity [17, 
18].

In addition to identifying new biomarkers, deconvo-
lution can also improve our understanding of disease 
mechanisms by revealing changes in gene expression pat-
terns within specific cell types or tissues. For example, 
deconvolution of RNA-seq data from Alzheimer’s disease 
patients has revealed changes in gene expression patterns 
in microglia, the immune cells of the brain, which may 

contribute to the neuro inflammation and neuronal dam-
age observed in this disease [19].

In one of the recent articles, the effect of cutaneous 
leishmaniasis infection on skin tissue has been inves-
tigated using the deconvolution method on RNA-seq 
data. Remarkably, despite the absence of any microscopic 
observations, they discovered a significant increase in the 
population of immune cells in the damaged tissue. This 
innovative application of the deconvolution technique 
elucidates the immunological dynamics associated with 
cutaneous leishmaniasis [20].

By separating mixed signals into their individual com-
ponents, deconvolution can reveal changes in gene 
expression patterns within specific cell types or tissues 
that may be missed by traditional analysis methods. This 
approach has the potential to improve our understanding 
of disease mechanisms and facilitate the development of 
more effective diagnostic and therapeutic strategies.

Using deconvolution of RNA-seq data for understanding 
cancer
Deconvolution of RNA-seq data has emerged for under-
standing the complex biology of cancer. RNA sequenc-
ing (RNA-seq) is a widely used technique for measuring 
gene expression levels in cells and tissues. However, the 
heterogeneity of cancer samples, which often contain 
multiple cell types, can confound the interpretation of 
RNA-seq data. Deconvolution methods aim to estimate 
the relative abundance of different cell types in a mixed 
sample based on their gene expression profiles.

One application of deconvolution in cancer research 
is to identify the cell types that contribute to tumor pro-
gression and metastasis. For example, immune cells such 
as T cells and macrophages have been shown to play 
important roles in shaping the tumor microenvironment 
and influencing cancer progression [21]. By deconvolving 
RNA-seq data from tumor samples, researchers can iden-
tify changes in immune cell populations that are associ-
ated with different stages of cancer development.

Another use of deconvolution is to identify molecu-
lar pathways that are dysregulated in specific cell types 
within tumors. For example, a recent study used decon-
volution to identify genes that are specifically upregu-
lated in cancer-associated fibroblasts (CAFs), a type of 
stromal cell that promotes tumor growth and invasion 
[22]. By targeting these CAF-specific genes with small 
molecules or other therapies, it may be possible to dis-
rupt the supportive environment that allows tumors to 
thrive.

Deconvolution can also be used to study the effects of 
cancer treatments on different cell types within tumors. 
For example, chemotherapy drugs often target rapidly 
dividing cells such as tumor cells but can also affect 
normal cells such as immune cells and stromal cells. By 
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deconvolving RNA-seq data from pre- and post-treat-
ment samples, researchers can identify changes in the 
relative abundance of different cell types and assess how 
they respond to treatment [23].

By identifying the cell types that contribute to tumor 
progression, dysregulated molecular pathways, and treat-
ment effects on different cell types, deconvolution can 
provide insights into the mechanisms underlying can-
cer development and inform the development of new 
therapies.

Deconvolution in single-cell RNA sequencing
Deconvolution has become a valuable tool in the analy-
sis of single-cell RNA sequencing (scRNA-seq) data. The 
application of deconvolution in scRNA-seq involves esti-
mating the cell type composition and abundance within a 
heterogeneous cell population based on the gene expres-
sion profiles obtained from individual cells.

One common approach is to use reference gene expres-
sion profiles from known cell types as a basis for decon-
volution. These reference profiles can be obtained from 
bulk RNA-seq data or from existing databases of cell 
type-specific gene expression signatures. By comparing 
the gene expression patterns of individual cells to the ref-
erence profiles, deconvolution algorithms can infer the 
relative proportions of different cell types present in the 
population.

Deconvolution in scRNA-seq can provide valuable 
insights into cellular heterogeneity and the composition 
of complex tissues or disease states. It allows researchers 
to identify and quantify specific cell types, characterize 
cell type-specific gene expression patterns, and investi-
gate changes in cell type proportions under different con-
ditions or disease states.

Furthermore, deconvolution can be used to infer sig-
naling interactions and cellular communication within a 
tissue or between different cell types. By estimating the 
abundance of specific cell types and their interactions, 
deconvolution methods can provide a more comprehen-
sive understanding of cellular dynamics and functional 
relationships.

The application of deconvolution in scRNA-seq data 
analysis enhances our ability to unravel the cellular com-
plexity of tissues and diseases, enabling more accurate 
characterization and interpretation of single-cell gene 
expression profiles.

Deconvolution in rare cell population
Deconvolution methods can be particularly useful in 
studying rare cell populations within scRNA-seq data. 
Rare cell populations often present challenges in their 
identification and characterization due to their low abun-
dance and potential overlap with more abundant cell 

types. However, deconvolution can aid in unraveling the 
presence and properties of these rare cells.

By leveraging reference gene expression profiles from 
known cell types, deconvolution algorithms can estimate 
the proportions of different cell types, including those 
that are rare, within a heterogeneous population. This 
allows researchers to identify and quantify the specific 
rare cell populations present in the data.

Deconvolution can also assist in distinguishing rare 
cell types from closely related or overlapping cell popu-
lations. By comparing the gene expression profiles of 
individual cells to the reference profiles, deconvolution 
methods can help discriminate between similar cell types 
that may share some gene expression patterns. This can 
provide insights into the specific gene expression signa-
tures or markers that distinguish the rare cell population 
of interest.

Furthermore, deconvolution can facilitate downstream 
analyses of rare cells by enabling their isolation for fur-
ther experimental validation or functional character-
ization. Once the rare cell population is identified and 
quantified, researchers can target and isolate these cells 
for additional experiments such as flow cytometry, sin-
gle-cell sequencing, or functional assays. This targeted 
isolation can greatly enhance our understanding of the 
biological properties and functions of these rare cells [24, 
25].

Deconvolution methods play a vital role in aiding the 
study of rare cell populations in scRNA-seq data by accu-
rately estimating their proportions, distinguishing them 
from similar cell types, and enabling their targeted isola-
tion for further analysis. This contributes to a more com-
prehensive understanding of rare cell populations and 
their significance in various biological processes and dis-
ease contexts.

Different methods of RNA-seq data deconvolution
Here are some commonly used methods for deconvolu-
tion of RNA-seq:

1.	 CIBERSORT
 	• �CIBERSORT (Cell-type Identification By 

Estimating Relative Subsets Of RNA Transcripts) 
is a widely used deconvolution method for RNA-
seq data. It employs a support vector regression 
algorithm to estimate the proportions of cell 
types in a mixed sample. CIBERSORT relies 
on a predefined signature matrix consisting of 
gene expression profiles from pure cell types. 
It quantifies the relative contributions of these 
signatures to the gene expression patterns 
observed in the mixed sample [8, 26–29].

2.	 quanTIseq:
 	• �quanTIseq is a deconvolution method specifically 

designed for tumor-infiltrating immune cells in 
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cancer samples. It uses RNA-seq data to estimate 
the proportions of different immune cell types 
within the tumor microenvironment. quanTIseq 
integrates a machine learning approach with 
a gene signature matrix to infer immune cell 
proportions. It accounts for the heterogeneity of 
cell types and the potential presence of unknown 
cell subtypes [12].

3.	 xCell:
 	• �xCell is a deconvolution method that estimates 

the proportions of various cell types in a mixed 
sample using RNA-seq data. It employs a gene 
set enrichment analysis approach, comparing the 
expression profiles of genes in the mixed sample 
to a reference gene set database representing 
different cell types. xCell takes advantage of the 
distinct gene expression patterns associated 
with specific cell types to estimate their relative 
abundances [30–32].

4.	 DeconRNASeq:
 	• �DeconRNASeq is a deconvolution method 

that utilizes RNA-seq data to estimate cell type 
proportions in a mixture. It employs a constrained 
non-negative matrix factorization approach, 
which decomposes the gene expression matrix of 
the mixed sample into two matrices representing 
the cell type proportions and gene expression 
signatures of individual cell types. By iteratively 
optimizing the factorization, DeconRNASeq 
estimates the relative abundances of cell types 
[33].

5.	 MuSiC:
 	• �MuSiC (Multi-subject Single-cell deconvolution) 

is a deconvolution method specifically designed 
for single-cell RNA-seq data. It estimates the 
proportions of cell types within a sample by 
leveraging reference single-cell RNA-seq datasets. 
MuSiC employs a probabilistic model to infer 
the cell type proportions based on the similarity 
between the gene expression profiles of the 
sample and reference datasets [34].

6.	 MCP-counter:
 	• �MCP-counter (Microenvironment Cell 

Populations-counter) is a deconvolution method 
that can be used for RNA-seq data. It estimates 
the proportions of different cell types within 
a sample based on RNA-seq gene expression 
profiles. MCP-counter specifically focuses on 
characterizing the tumor microenvironment by 
quantifying the abundance of tumor-infiltrating 
immune cells and stromal cells [35].

MCP-counter employs a reference gene expression 
signature matrix that represents different cell 
types within the tumor microenvironment. 

It uses a single-sample gene set enrichment 
analysis (ssGSEA) approach to assess the 
enrichment of these cell type signatures in the 
gene expression data of the sample. By comparing 
the sample’s gene expression profiles to the 
reference signatures, MCP-counter estimates the 
relative proportions of immune and stromal cell 
populations within the tumor [8].

MCP-counter has been widely used in cancer 
research to explore the composition of the tumor 
microenvironment and its association with 
clinical outcomes. It provides valuable insights 
into the immune and stromal cell components of 
tumors, allowing researchers to study their roles 
in tumor progression, immune response, and 
therapy response [36].

Comparison of the deconvolution methods.
1.	 CIBERSORT

 	• �Widely used gene expression-based deconvolution 
method.

 	• Relies on a predefined signature matrix of gene 
expression profiles from pure cell types.

 	• Utilizes support vector regression algorithm for 
estimation.

 	• Effective for estimating cell type proportions in 
heterogeneous samples.

 	• Particularly useful for studying immune cell 
composition in various diseases, including cancer.

2.	 quanTIseq:
 	• �Specialized for deconvolving tumor-infiltrating 

immune cells in cancer samples.
 	• Employs a machine learning approach with a gene 

signature matrix.
 	• Accounts for cell type heterogeneity and possible 

unknown subtypes.
 	• Enables analysis of immune cell composition and 

its association with tumor biology and clinical 
outcomes.

3.	 xCell:
 	• �Utilizes gene set enrichment analysis to estimate 

cell type proportions.
 	• Relies on a reference gene set database 

representing different cell types.
 	• Takes advantage of distinct gene expression 

patterns associated with specific cell types.
 	• Provides relative abundance estimates of various 

cell types in mixed samples.
4.	 DeconRNASeq:

 	• �Uses a constrained non-negative matrix 
factorization approach.

 	• Decomposes the gene expression matrix into cell 
type proportions and gene expression signatures.

 	• Suitable for estimating cell type proportions in 
mixed RNA-seq samples.
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 	• Facilitates characterization of cell type-specific 
gene expression profiles.

5.	 MuSiC:
 	• �Developed for deconvolving single-cell RNA-seq 

data.
 	• Utilizes a probabilistic model with reference 

single-cell datasets.
 	• Estimates cell type proportions based on similarity 

between gene expression profiles.
 	• Enables identification of cell type composition in 

single-cell transcriptomic data.
6.	 MCP-counter:

 	• �Focuses on characterizing the tumor 
microenvironment.

 	• Estimates the abundance of tumor-infiltrating 
immune cells and stromal cells.

 	• Relies on a reference gene expression signature 
matrix.

 	• Utilizes single-sample gene set enrichment 
analysis (ssGSEA).

 	• Provides insights into immune and stromal cell 
components of tumors.

These deconvolution methods offer various approaches 
and algorithms for estimating cell type proportions in 
RNA-seq data. They differ in their methodology, target 
cell types, and specific applications. Researchers should 
consider the biological context, research question, and 
available reference data when selecting the most appro-
priate method for their specific study. Additionally, it is 
important to validate and interpret the results carefully, 
considering the limitations and assumptions of each 
method.

Conclusion
Deconvolution of RNA-seq data has become an increas-
ingly popular method for analyzing complex gene expres-
sion profiles. It offers several advantages, including the 
ability to identify cell-type-specific gene expression pat-
terns and to infer changes in cell composition within a 
tissue or sample. However, there are also limitations to 
this approach, such as the need for accurate reference 
datasets and the potential for bias in the deconvolution 
process. Despite these challenges, researchers continue 
to refine and improve deconvolution methods, making 
it a valuable tool for understanding gene expression in 
complex biological systems. As our understanding of this 
technique continues to evolve, we can expect it to play an 
increasingly important role in advancing our knowledge 
of cellular biology and disease pathology.
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