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Label-free serum proteomics and
multivariate data analysis identifies
biomarkers and expression trends
that differentiate Intraductal papillary
mucinous neoplasia from pancreatic
adenocarcinoma and healthy controls
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Abstract

Background: Intraductal Papillary Mucinous Neoplasia (IPMN) are potentially malignant cystic tumors of the pancreas.
IPMN can progress from low to moderate to high grade dysplasia and further to IPMN associated carcinoma. Often the
difference between benign and malignant nature of the IPMN is not clear preoperatively. We aim to elucidate
molecular expression patterns of various grades of IPMN and pancreatic carcinoma. Additionally we suggest potential
novel biomarkers to differentiate IPMN from healthy individuals and pancreatic carcinoma to enable early detection as
well as help in differential diagnosis in future.

Methods: We have performed retrospective label-free proteomic analysis of the serum samples from 44 patients with
various grades of benign IPMN or IPMN associated carcinoma and 11 healthy controls. Proteomic data was further
analyzed by various multivariate statistical methods. Four groups of samples (low-grade, high-grade IPMN, pancreatic
carcinoma and age- and sex-matched healthy controls) were compared with ANOVA. Orthogonal projections to latent
structures-discriminant analysis (OPLS-DA) modeling gave S-plot for feature selection. Stringently selected potential
markers were further evaluated with ROC curve analysis and area under the curve was calculated. Differentially
expressed proteins were used for pathway analysis. Linear trend analysis (Mann Kendall test) was used for identifying
significant increasing or decreasing trends from healthy-low grade-high grade IPMN-pancreatic carcinoma.
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Results: Based on protein expression (436 proteins quantified), PCA separated most sample groups from each other. S-
Plot selected biomarker panels with moderate to very high AUC values for differentiating controls from Low-, High-
Grade IPMN and carcinoma. Linear trend analysis identified 12 proteins which were consistently increasing or
decreasing trend among the groups. We found potential biomarkers to differentiate healthy controls from different
degrees of dysplasia and pancreatic carcinoma. These biomarkers can classify IPMN, carcinoma and healthy controls
from each other which is an unmet clinical need. Data are available via ProteomeXchange with identifier PXD009139.

Conclusion: Kininogen-1 was able to differentiate healthy persons from low and high-grade IPMN. Retinol binding
protein-4 could classify the low-grade IPMN from pancreatic carcinoma. Twelve proteins including apolipoproteins and
complement proteins had significantly increasing or decreasing trends from healthy to low to high-grade IPMN to
pancreatic carcinoma.

Keywords: IPMN, Low-grade dysplasia, Pancreatic carcinoma, Serum proteomics, UDMSE

Background
Intraductal Papillary Mucinous Neoplasia (IPMN)
tumors are considered possibly precancerous and start-
ing from low grade dysplasia some of them develop into
IPMN associated pancreatic cancer. The prognosis of
IPMN is good if the tumor is operated before malignant
transformation occurs. On the other hand, not nearly all
IPMNs undergo malignant transformation during the
patient’s life time. The criteria for surgery are listed in
the European and International consensus guidelines
[1, 2]. The risk of cancer is higher in IPMNs involving
the main duct. Progression to cancer may occur years
after diagnosis and therefore patients are followed up
as long as they are fit for major surgery. Current way of
life-long follow up is laborious for both patients and
hospitals, and total costs are considerable.
New biomarkers are needed to help identify early

IPMN cases and define the grades of dysplasia based on
minimally invasive techniques. At the same time it’s im-
portant to differentiate the low-risk patients from those
with high grade dysplasia with a high risk of developing
carcinoma and from patients already carrying IPMN as-
sociated carcinoma. Less invasive markers that stratify
the risk population will immensely help the clinical deci-
sion making. Pancreatic biopsy is an invasive procedure
and diagnostic samples can be difficult to obtain. The
same is true for fluid samples from pancreatic cysts.
Therefore, biomarkers determined from blood samples
are an important research field because they can be
easily used for long follow ups.
Differences in proteins found in serum samples could

provide a way to differentiate IPMNs with different
states of dysplasia. The aim of our study was to compare
the serum protein profiles in sera of patients with IPMN
with low (LG) or high grade (HG) dysplasia, IPMN asso-
ciated carcinoma (IPMNC) and healthy controls (CRTL).
We have quantified 436 serum proteins with two or
more unique peptides from 55 serum samples including

11 healthy controls. The proteomic dataset was further
analyzed with advanced multivariate statistical data ana-
lysis techniques to find the protein features which could
be used as potential biomarkers of various grades of dys-
plasia as well as to differentiate dysplasia samples from
pancreatic carcinoma. The multivariate data analysis
techniques employed in the current study included prin-
cipal component analysis (PCA), orthogonal projections
to latent structures-discriminant analysis (OPLS-DA)
which were followed by pathway analysis, linear trend
analysis (Mann Kandell test) and Receiver operating
characteristic curve analysis. These statistical techniques
gave us a biomarker panel to differentiate various types
of IPMN form each other and from pancreatic carcin-
oma and healthy controls. Additionally, linear trend ana-
lysis identified proteins having a clear increasing or
decreasing expression trend from healthy controls - low
grade - high grade IPMN - pancreatic carcinoma. These
proteins potentially have a mechanistic role in progres-
sion and/or development of the neoplasm.

Materials and methods
At Helsinki University Hospital (HUH) 98 patients were
operated for pancreatic intraductal papillary mucinous
neoplasia (IPMN) in 2000–2015. Preoperative frozen
serum sample was available for 44 patients out of the 98.
Clinical data was collected and re-evaluated. Routine
surgical specimens from the archives of Department of
Pathology were re-evaluated by an experienced patholo-
gist. In our patient series 13 patients had low grade
dysplasia, 10 patients high grade dysplasia and 21 carcin-
oma. Fourteen tumors were main duct type, 25 branch
duct type and 5 mixed type IPMN. The majority of the
tumors were pancreatobiliary (31 samples), eight were
intestinal and three were gastric subtype. We did not re-
ceive histological samples of two cases from the archives
and thus we were not able to re-evaluate the subtype of
the tumor of these two cases.
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The 21 cancer samples were mainly classified as ductal
adenocarcinoma (12 samples), 7 samples were IPMN
associated invasive carcinoma and 2 colloid carcinoma.
The serum samples were stored in − 80 °C until ana-
lyzed. Control serum samples were collected from 11
age and gender matching healthy individuals.
This is a multigroup comparison retrospective study.

ANOVA and advanced multivariate statistical techniques
were used for data analysis. Receiver operating charac-
teristic curve analysis was also used to evaluate perform-
ance of the potential markers.
The study was approved by the Surgical Ethics Com-

mittee of Helsinki University Hospital (Dnro HUS 226/
E6/06, extension TMK02 §66 17.4.2013), the use of arch-
ive tissue material by the National Supervisory Authority
of Welfare and Health (Valvira Dnro 10,041/06.01.03.01/
2012), and collecting serum samples by from the
patients (written informed consent).

Trypsin digestion
Serum samples were thawed and immediately processed
essentially as described previously in details [3–5]. Briefly,
top12 high-abundant proteins were depleted using Pierce™
Top 12 Abundant Protein Depletion Spin Columns
(Thermo Fisher). Depleted serum samples were used for
total protein determination using BCA essay (Pierce,
Thermo Fisher). Equal amount of protein was reduced,
alkylated and trypsin digested before mass spectrometry
analysis. Further details are given in Additional file 1:
Supplementary methods.

Liquid chromatography-mass spectrometry (LC-MS) and
quantitation
Ultra-performance liquid chromatography (UPLC) and ultra-
definition MSE (UDMSE)
Four μL of each samples (1.4 μg of peptides) were injected
to nanoAcquity UPLC system (Waters Corporation, MA,
USA). Separation device used prior to MS was TRIZAIC
nanoTile 85 μm×100mm HSS-T3u wTRAP. Buffer used,
analytical gradient and data acquisition parameters are
given in Additional file 1: Supplementary methods. Work-
ings of UDMSE has been described briefly in Additional
file 1: Supplementary methods and in details previously [6].

Data analysis
Data analysis was essentially performed as described
previously [3–5]. Briefly, raw files were imported to Pro-
genesis QI for Proteomics software with lock mass cor-
rection using doubly charged Glu1-Fibrinopeptide B
(785.8426m/z). Runs were aligned automatically and
peak picking was performed, both with default parame-
ters. Protein Lynx Global Server was used for peptide
identification and label free quantitation was performed

according to Silva et al. [7]. Further details are given in
Additional file 1: Supplementary methods.

Statistics and pathway analysis
PCA, OPLS-DA modelling and ROC curve details are
given in Additional file 1: supplementary methods and
figures. Pathway analysis was performed with FunRich
3.0 [8]. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via
the PRIDE [9] partner repository with the dataset identi-
fier PXD009139.

Results
Metadata
Forty-seven patients, who were operated for IPMN at
Helsinki University Hospital in 2000–2015 were in-
cluded in the study. They included 15 patients with low
grade dysplasia (LG), 10 patients with high grade dyspla-
sia (HG) and 22 with IPMN associated carcinoma
(IPMNC). All of them had given a serum sample before
operation with informed written consent. We also
collected serum samples from 11 healthy volunteers to
be used as control samples. One sample failed
normalization and two others had breast cancer and
mucinous carcinoma in addition to IPMN. These 3
samples were removed from the further analysis and
only 44 samples were further analyzed. All samples in-
cluded in the study and analyses are given in Additional
file 2: Table S1A.

Ultra high definition MSE (UDMSE) and statistical analysis
Fifty-five serum samples including 11 controls were ana-
lysed by UDMSE mode (Data-Independent acquisition)
as described in methods. Nine hundred proteins were
identified however it also included proteins with one or
less unique peptides. We filtered the data with 12 ppm
mass error, + 1 to + 4 charge and at least 2 unique pep-
tides which gave us 436 reliably identified and quantified
proteins. These 436 proteins are reported in this study
and only they were used for further analyses (Additional
file 2: Table S1B). These 436 proteins contained 11,711
total peptides out of which 7306 were unique peptides
to their corresponding proteins. The confidence score
was 6 for putative uncharacterized protein FLJ11871 and
4172 for complement C3. It is to be noted that within
class and across class variation for all the proteins was
relatively lower (controls median %CV for all the pro-
teins: 22.20, LG: 26.91, HG: 28.21 and IPMNC: 38.52).
The median of the median for all classes of samples was
27.56. This suggests that our phenotypes were
homogenous and suitable for inter-class comparisons. At
the same time low %CV, across all classes, makes it
harder to dig out the proteins which differ biologically
across the classes. We made 6 comparisons across classes
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and used stringent multivariate classification techniques
to find the protein expressions which could classify any 2
different classes in pairwise comparisons. For every com-
parison, principal component analysis and orthogonal
projections to latent structures-discriminant analysis
(OPLS-DA, visualized by S-Plot) was performed.
OPLS-DA is a stringent multivariate data-analysis tech-
nique which can be used to find predictive variance and
separate out uncorrelated variance from the data. It is to
be noted that we report all proteins passing p(Corr) [1]
cutoff value of + 0.7 or − 0.7 however, in the main text we
only report proteins among these which also have p [1]
cutoff of + 0.1 or − 0.1. These proteins have less chances
of having spurious correlations to the phenotypes. Further
details about these cutoffs are provided in discussion sec-
tion. For the purpose of ease of understanding, the section
will be divided into six subsections encompassing compar-
isons between all types of samples used in the study. The
ANOVA p values for these proteins for each individual
comparison as well as fold changes and other parameters
can be found in Additional file 2: Table S1C.

Control vs low grade dysplasia
In this comparison, which is mainly done to identify the
very early detection biomarkers (also working as screen-
ing biomarkers), 108 proteins passed the ANOVA p
value cutoff (≤0.05). Out of these, 34 proteins were
decreased in LG samples while 74 proteins were
increased (Additional file 2: Table S1C). Among the

decreased proteins, 15 proteins had the fold change (FC)
of more than 1.5 including four proteins having more
than FC of 2. Among these were Cytochrome c-type
heme lyase (mean normalized abundance in LG 588.43
± 94.82 and 1202.81 ± 162.42 in controls) and Serine
protease inhibitor Kazal-type 2 (LG: 13463.42 ± 1535.74
and controls: 27433.22 ± 3376.14). Similarly among the
increased proteins in LG, 21 proteins had FC more than
1.5 including 13 with FC of more than 2. Few key pro-
teins which had higher levels in LG are lipoprotein lipase
(mean normalized abundance in LG: 15660.04 ± 2962.59
compared to 3864.24 ± 492.72 in controls) and Alanyl-
tRNA editing protein Aarsd1 (LG: 58179.62 ± 7025.68
compared to 16,523.85 ± 1326.76 in controls).
The separation of these two classes of samples was

visualized with principal component analysis (Fig. 1a, b).
Figure 1a shows the PCA when all proteins quantified
were considered for PCA. This panel already shows the
clear separation of these classes of samples. Figure 1b
shows PCA when proteins passing the cutoff of ANOVA
p Values less than 0.05 were considered. This panel
shows complete separation of 2 classes.
Encouraged by the PCA results, we modelled the

quantitative proteomics data with Orthogonal projec-
tions to latent structures-discriminant analysis (OPLS-
DA) which is visualized by S-Plot. OPLS-DA can classify
the samples into their respective classes if the data has
predictive variance. It also provides the protein Ids
which are responsible for the classification. In other

Fig. 1 A representative Principal Component Analysis (PCA) and Orthogonal projections to latent structures-discriminant analysis (OPLS-DA)
visualized by S-PlotPCA of Control vs Low-grade dysplasia when all the proteins were considered for PCA (a) and when only ANOVA passing
proteins (p value < 0.05) were considered for PCA (b). Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) visualized by S-
Plot (c). 0 to − 1 space contains proteins higher in controls and 0 to + 1 space contains proteins higher in low-grade dysplasia. X-axis is p [1]
loadings which tells about the magnitude of variance and Y-axis is p(Corr) [1] which tells about the reliability of the predictive variance. A cutoff
of > + 0.7 or < − 0.7 for p(Corr) [1] was used to find significantly different proteins between the groups
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words, proteins which are strongly representative of the
sample classes can be found using this technique. S-Plot
was used for pairwise comparison (Controls Vs LG)
which is shown in Fig. 1c. S-Plot gave 8 proteins
(p(Corr) [1] of > + 0.7 or < − 0.7) which were able to
classify the two classes. These proteins were increased in
LG as shown in Additional file 2: Table S2. Figure 1 is a
representative figure shown in main body of the manu-
script. For all other comparisons similar figures are
shown in the Additional file 1.

Control vs high grade dysplasia
Seventy proteins passed the ANOVA significance of 0.05
among which many were found to be increased or de-
creased (FC 1.1 to 13.4, Additional file 2: Table S1C) in
HG compared to CTRL. Some of the key proteins in-
creased in HG were DNA polymerase epsilon subunit 3
(HG: 9146.19 ± 1427.42 and CTRL: 3287.62 ± 759.11)
and Claspin (HG: 3419.52 ± 538.19, CTRL: 1505.07 ±
139.33). Similarly some proteins decreased significantly
were Hemoglobin subunit alpha (HG: 50267.85 ±
8471.09, CTRL: 117705.5 ± 39,323.12) and Hemoglobin
subunit beta (HG: 82753.3 ± 10,512.54, CTRL: 169397.7
± 48,551.32). PCA showed good separation when all the
proteins were considered (Additional file 1: Figure S1A)
and complete separation when ANOVA cutoff (0.05)
passing proteins were considered (Additional file 1:
Figure S1B). OPLS-DA S-Plot (Additional file 1: Figure
S1C) provided with four proteins passing the cutoff of
p(Corr) [1] of + 0.7 and − 0.7 which are given in
Additional file 2: Table S3.

Control vs IPMN carcinoma
Control vs carcinoma comparison provided 124 proteins
which were passing the ANOVA cutoff, out of which, 50
were present in increased amounts in IPMN carcinoma
patients and the rest were decreased in carcinoma
(Additional file 2: Table S1C). PCA showed clear separ-
ation when all the proteins were considered (Additional
file 1: Figure S2A) which became even better with
ANOVA significant proteins (Additional file 1: Figure
S2B). Controls were mostly clustered together in PCA
space while IPMN associated carcinoma (IPMNC) were
largely heterogenous in nature as they were spaced
further apart from each other in PCA space.
OPLS-DA S-Plot (Additional file 1: Figure S2C) pro-

vided an exhaustive list of 27 proteins passing the cutoff
of p(corr) [1] of + 0.7 and − 0.7 (Additional file 2: Table
S4). This highlights the clear serum protein profile
differences between CTRL and IPMNC patients.

Low grade vs high grade dysplasia
This comparison was made to ascertain whether trans-
formation from low grade to high grade dysplasia is also

reflected in the serum protein profile. LG and HG sam-
ples were mixed in PCA analysis when all the proteins
were considered and showed slightly better separation
when only ANOVA significant proteins were considered
(Data not shown). However still, some samples showed
overlap between LG and HG in PCA space which is ex-
pected as this classification (pathologically establishing
LG and HG) is done on a subjective basis and serum
protein profiles may not be that different as the disease
is not fully developed at this stage. OPLS-DA S-Plot did
not give any proteins passing the cutoff of p(Corr) [1]
specified in previous analyses.

Low grade vs IPMN carcinoma
Among the proteins increased in LG compared to
IPMNC four proteins had a fold change > 2 which in-
cluded Rhodopsin kinase (LG: 211.36 ± 101.80, IPMNC:
60.42 ± 31.50) and Coagulation factor XIII (LG: 1806.78
± 236.11, IPMNC: 710.25 ± 124.72). Some of the key de-
creased proteins in LG were Sperm surface protein Sp17
(also known as cancer antigen 22; LG: 15772.64 ±
1505.75, IPMNC: 65425.64 ± 18,063.9) and Myosin light
polypeptide 6 (LG: 767.26 ± 147.09, IPMNC: 2292.24 ±
516.04). PCA separation of LG VS IPMNC had many
overlapping samples in the PCA space (Additional file 1:
Figure S3A) however, when ANOVA significant proteins
were considered (Additional file 1: Figure S3B) several of
them moved apart in the space. This shows that it is
possible to classify LG Vs IPMNC patients but some of
them might still overlap. The observation that LG can
be classified apart from IPMNC was further supported
by OPLS-DA S-Plot (Additional file 1: Figure S3C)
which gave several proteins with good p(Corr) values
(Additional file 2: Table S5). These proteins can be used
to potentially discriminate between these partially am-
biguous clinical entities.

High grade dysplasia vs IPMN carcinoma
Some significantly different proteins between HG and
IPMNC which had higher levels in IPMNC samples
(FC > 3) were same as LG vs IPMNC (Sp17 and MYL6).
Other key proteins which had higher levels in HG com-
pared to IPMNC were Sperm protein associated with
the nucleus on the X chromosome N3 (SPANXN3, HG:
613.57 ± 137.57, IPMNC: 214.13 ± 42.30) and Cathelici-
din antimicrobial peptide (CAMP, HG: 676.57 ± 114.04,
IPMNC: 329.65 ± 55.14). HG vs IPMNC PCA showed a
similar pattern as LG VS IPMNC again emphasizing that
it’s possible to differentiate between dysplasia and
IPMNC based on serum protein profile (Additional file 1:
Figure S4 A & B). OPLS-DA S-Plot (Additional file 1:
Figure S4C) once again gave several proteins (Additional
file 2: Table S6) capable to discriminate between these 2
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clinically inseparable entities (with minimally invasive
serum proteomic profile).

Network/pathway analysis
Various proteins lists originating from above mentioned
comparisons were enriched for biological pathways using
the publicly available tool FunRich 3.0 [8]. Initially to get
a glimpse of what pathways were altered, we consid-
ered all the significantly different proteins (ANOVA
cutoff < 0.05) for enrichment of biological pathways.
Top 10 pathway according to –log10 p value of en-
richment are given in Fig. 2. These top 10 pathways
encompassed complement cascade, coagulation and
lipid transport as the major categories. Note that per-
centage of genes in each pathway, multiple corrections
of p values by two different methods etc. gave different
pathway as top ones. The detailed pathway table are
given in Additional file 2: Table S7.
In comparing control group with all three categories

of IPMN, LG, HG and IPMNC, the top 5 pathway
enriched in proteins having highest mean in controls
and proteins having highest mean in either LG, HG and
CAR separately are given in Table 1. The pathways were
sorted according to p values of enrichment. They are

similar in controls across the comparisons and comple-
ment and coagulation are the main pathways in proteins
having highest mean in controls. However, initially in
LG, integrin signalling and proteoglycan based signalling
come up while as we go towards HG and IPMNC they
also shift towards complement and coagulation.

Stage wise comparison of patterns in protein expression
(linear trend analysis)
To find out if there are patterns in serum protein
expression across various stages such as from controls
to LG to HG to IPMNC, we generated line graphs. After
taking category-specific averages we got 4 values
(Controls, LG, HG and IPMNC) which we plotted to see
the angle at which they decrease or increase throughout
the four classes of samples. We found several proteins
with patterns and they were further filtered to include
only the proteins which were passing the ANOVA cutoff
of 0.05. Twelve proteins with clear increasing or de-
creasing trend were found in the dataset. The line
graphs of these proteins are presented in Fig. 3.
These 12 proteins included C-reactive protein [↑]

(P02741), various complement cascade proteins (P06681,

Fig. 2 Pathway analysis was performed by FunRich 3.0 program. All the proteins passing the cutoff of ANOVA p value < 0.05 were considered for
biological pathway enrichment. The list of pathways obtained was sorted by –log10 p value and only top 10 pathways are shown here

Saraswat et al. Translational Medicine Communications             (2019) 4:6 Page 6 of 12



Table 1 Top 5 pathways enriched by FunRich 3.0. In comparing controls (CTRL) vs Low-garde (LG) and High-grade dysplasia (HG)
and pancreatic carcinoma (CAR), the following pathways were found to be enriched. The pathways are given in the order of their
degree of enrichment from top to bottom in every column. HM means highest mean

1. CTRL VS LG 2. CTRL VS HG 3. CTRL VS CAR

1A. HMCTRL 1B. HMLG 2A. HMCTRL 2B. HMHG 3A. HMCTRL 3B. HMCAR

1A1.Hemostasis 1B1.Integrin family cell
surface interactions

2A1.Formation of Fibrin
Clot (Clotting Cascade)

2B1.Complement
cascade

3A1.Hemostasis 3B1.Complement
cascade

1A2.Platelet activation,
signaling and aggregation

1B2.Beta1 integrin cell
surface interactions

2A2.Hemostasis 2B2.Initial triggering
of complement

3A2.Complement
cascade

3B2.Formation
of Fibrin Clot
(Clotting Cascade)

1A3.Initial triggering
of complement

1B3.Proteoglycan syndecan-
mediated signaling events

2A3.Initial triggering
of complement

2B3.Innate Immune
System

3A3.Initial triggering
of complement

3B3.Initial triggering
of complement

1A4.Intrinsic Pathway 1B4.Alpha9 beta1 integrin
signaling events

2A4.Complement
cascade

2B4.Formation of
Fibrin Clot
(Clotting Cascade)

3A4.Formation
of Fibrin Clot
(Clotting Cascade)

3B4.Intrinsic Pathway

1A5.Complement cascade 1B5.Glypican pathway 2A5.Intrinsic Pathway 2B5.Terminal
pathway of
complement

3A5.Intrinsic
Pathway

3B5.Innate Immune
System

Fig. 3 The line graphs of all the protein in the dataset were made by taking means (±SEM) of every group. Proteins having a clear trend of
consistently decreasing or increasing values from controls to Low-grade dysplasia (LG) to High-grade dysplasia (HG) to Pancreatic carcinoma (PC)
are shown here. The first column has proteins which are decreasing from healthy controls to pancreatic carcinoma and other 2 columns have
proteins which are increasing from healthy controls to pancreatic carcinoma. These proteins were later confirmed to have statistically significant
trend by Mann Kendall test
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P02748, P08603, P00751, (C2, C9, complement factor H
and B [↑])), apolipoproteins (P02649, P02655 (APOC2
[↓], APOE [↓])), PHOX2B [↑] (Q99453), Uridine phop-
shorylase 1 [↑] (Q16831) and Uncharacterized family 31
glucosidase KIAA1161 [↓] (Q6NSJ0). Two others were
CABP4 [↓] and NUMA1 [↑]. Eight of these proteins had
clear upward trend with expression being lowest in
controls then increasing in LG, HG and IPMNC consist-
ently. Other four proteins were highest in controls
and they consistently went down from LG to HG to
IPMNC. Mann-Kendall test for linear trend analysis
gave statistically significant increasing trend for 8
proteins (p value < 0.05) and decreasing trend for 4
proteins (p value < 0.05) matching the description
given above.

ROC curve analysis
Biomarkers selected by S-Plot were verified by ROC
curve analysis and area under the curve values (AUC)
were calculated for each individual candidate. These bio-
marker panels for all comparisons are listed in Table 2.
Good AUC values were found for all proposed bio-
markers ranging from 0.739 (Mannan-binding lectin
serine protease 1 to differentiate CTRL vs IPMNC) to
1.000 (KRT72 to differentiate CTRL vs CAR).

Discussion
Benign Intraductal papillary mucinous neoplasias
(IPMN) are noninvasive epithelial tumours of the pan-
creas. These tumours are a common incidental finding
at CT and MRI. Diagnosis for the most part depends on

radiologic examination despite unsatisfactory accuracy
of the tools. More invasive procedures such as histo-
pathological investigation can help the diagnosis. This
includes the classification of IPMN into low-grade and
high-grade dysplasia. Often, both these types of dysplasia
can be seen in the same lesion suggesting progression
from low grade to high grade occurs in vivo. A LG dys-
plasia lesion has 8% chance of turning into IPMN associ-
ated carcinoma while a HG dysplasia lesion turns into
IPMNC with 25% chance over 10 years [10]. Pancreatic
cancer has poor survival rates which have improved only
little in recent years even in developed countries. This
necessitates very long follow up of the patients until they
are no longer fit for major surgery. Long follow ups pose
great economic demands on the health care system.
We analyzed serum samples by quantitative proteo-

mics from three classes of patients (LG, HG, IPMNC)
and compared them to healthy individuals. We made six
different comparisons from these 4 categories of sam-
ples. To differentiate LG and HG from controls would
provide minimally invasive biomarkers for early detec-
tion of IPMN while control vs carcinoma comparison
can provide screening biomarkers. IPMN is mostly
asymptomatic to patients or have non-specific symptoms
such as jaundice, pancreatitis and abdominal pain which
may already be signs of late stage disease. It is difficult
to diagnose IPMN based on only these symptoms. We
did further comparisons such LG vs HG, LG vs IPMNC
and HG vs IPMNC. These comparisons are particularly
important for clinicians as it is not known which of the
IPMN (and what grade of dysplasia) will eventually

Table 2 Biomarker panels. This table presents the biomarker panels for each comparison. Accession number, ANOVA p value, fold
change, S-Plot parameters values (p(Corr) [1]) and area under the curve (AUC) from ROC curve is given here. 95% confidence interval
(CI) and standard error is also shown

Primary
accession

Anova
p-value

Fold
change

Highest
mean

Lowest
mean

Description p [1] p(corr) [1] AUC 95% CI SE

Control Vs Low-Grade IPMN

P01042 2.58E-05 1.26 Low Grade Control Kininogen-1 0.23 0.78 0.95 0.872–1.036 0.041

P10909 0.0018 1.20 Low Grade Control Clusterin 0.13 0.72 0.85 0.703–1.011 0.078

Control Vs High-Grade IPMN

P01042 4.24E-05 1.30 High Grade Control Kininogen-1 0.28 0.75 0.93 0.823–1.050 0.058

Control Vs Pancreatic Carcinoma

P48740 0.031 1.19 Control Carcinoma Mannan-binding lectin
serine protease 1

0.10 0.75 0.72 0.541–0.905 0.092

P02656 0.005 1.49 Control Carcinoma Apolipoprotein C-III 0.12 0.72 0.80 0.635–0.965 0.083

P04083 1.40E-05 1.32 Carcinoma Control Annexin A1 −0.11 −0.74 0.91 0.820–1.016 0.050

Low-Grade IPMN Vs Pancreatic Carcinoma

P48740 0.0131 1.20 Low Grade Carcinoma Mannan-binding lectin
serine protease 1

0.10 0.75 0.73 0.565–0.914 0.089

P27169 0.0036 1.31 Low Grade Carcinoma Serum paraoxonase/
arylesterase 1

0.22 0.70 0.79 0.629–0.957 0.083

P02753 0.0005 1.45 Low Grade Carcinoma Retinol-binding protein 4 0.12 0.70 0.84 0.708–0.984 0.070
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develop into IPMN associate carcinoma and in how
many years. To be able to differentiate LG and HG with
minimally invasive biomarkers would be ideal for clinical
settings. LG can rather safely be followed up, whereas
patients with HG often are recommended surgery
because of the high risk of developing cancer.
Four hundred thirty-six proteins (at least 2 unique

peptides) were quantified from the serum samples of
above described groups of patients and healthy individ-
uals. After analyzing the serum proteomic profile by
PCA and OPLS-DA modeling, we also calculated AUC
values of ROC curve for the proteins found to be signifi-
cantly different in S-Plot.
The first three comparisons that we did among the

sample classes were control vs LG or HG or IPMNC.
Control vs LG or HG comparisons would be expected to
provide early detection biomarkers. Other comparisons
such LG vs IPMNC and HG vs IPMNC will give us in-
formation as to which of these LG or HG might develop
into carcinoma in context of serum protein expression
values. Further, LG vs HG vs IPMNC comparison bio-
markers will help make better clinical decision about re-
section of HG vs IPMNC. Top proteins which could
differentiate the controls from LG (increased in LG)
were Protein WWC2 (WWC2), kininogen-1 (KN1),
Insulin-like growth factor-binding protein 3 (IGFBP-3)
and guanine nucleotide exchange factor DBS (DBS,
decreased in LG) (Additional file 2: Table S2). It is to be
noted here that Kininogen-1 and Clusterin had the best
p(Corr) [1] and p [1] parameters to be suggested as
potential biomarkers (Table 2) however, to get a glimpse
of altered events/pathways even relatively low confi-
dence changes are considered. WWC2 negatively regu-
lates cell proliferation by modulating hippo pathway
[11]. YAP-1 is among the proteins which control pancre-
atic cancer initiation [12] and WWC2 is an inhibitor of
YAP-1. It’s plausible that as YAP-1 activity increases in
LG, WWC2 is upregulated to counter its effects. WWC2
protein was consistently increased in LG, HG and
IPMNC compared to control and it could also discrim-
inate IPMNC from controls by S-Plot. Tissue specific
upregulation of IGFBP3 in PDAC compared to IPMN
have been previously found [13]. IGFBP3 has been
shown to discriminate the early stage IPMNC from that
of healthy controls [14, 15] and our results show that
already at LG stage of IPMN this protein is discrimin-
atory to healthy controls.
In comparison of controls vs LG, one of the key pro-

tein decreased in LG was SPINK2. This protein was also
decreased in HG and IPMNC however there was not
much difference between LG vs HG. It’s family member
SPINK1 is a negative regulator of autophagy and muta-
tions in SPINK1 are known to be associated with heredi-
tary pancreatitis [16]. Variable expression of SPINK2, on

the other hand, is known to modulate response to apop-
totic stimuli in-vitro [17]. Additionally, Kiniongen-1 was
found to be the top S-Plot protein in comparisons of
controls vs LG and HG and compared to controls it was
still higher in IPMNC. This protein is part of
kallikrein-kinin system of blood coagulation and
thromboembolic disease is one of the major complica-
tions of pancreatic adenocarcinomas [18].
Cytochrome c-type heme lyase (HCCS) was the top

protein predicted by S-Plot to be discriminatory between
HG and controls. Looking at the data for this protein in
whole dataset there was a clear trend of decrease from
controls to dysplasia to carcinoma. HCCS was lower in
both LG and HG compared to controls. HCCS stabilizes
free cytochrome c [19], therefore it might function in
the evasion of apoptosis by various types of cancer cell.
In comparison of HG vs IPMNC, S-Plot gave 6 proteins
out of which the highest fold changes were observed for
TDP1. TDP1 depletion can lead to cell death and its up-
regulation in IPMNC is expected as it repairs the DNA
damage introduced tumorigenesis events and by various
chemotherapy drugs [20]. Hemoglobin alpha and beta
were also reduced in HG compared to controls. In as
much as 7% of patients with various solid tumors
including pancreatic cancer, disseminated intravascular
coagulation is observed [21] which can lead to hemolytic
anemia potentially reducing hemoglobin levels. Hemolytic
anema cases in pancreatic cancers have been reported
[22]. On the other hand Claspin had higher levels in HG
compared to controls and it was also high in LG and
IPMNC. It has been shown that Claspin downregulation
can sensitize the pancreatic cancer cells to drug-induced
DNA damage [23]. In line with this observation, a base
excision repair enzyme DNA polymerase epsilon subunit
3 was found to be higher in HG compared to controls in
our dataset. This enzyme is involved in recombinatorial
processes in the cells [24] and it is expected to be higher
in dysplasia and cancer cells due to higher recombinatorial
activity commonly found in cancers.
In comparing LG and HG with IPMNC, some top

changing proteins were Cancer antigen 22 (CT22) and
Rhodopsin kinase which were decreased and increased
in LG compared to IPMNC, respectively. CT22 is known
as sperm surface protein 17 and belong to the class of
cancer/testis antigens which show high promise as onco-
logic biomarkers. CT22 has bene shown to be a good
diagnostic and prognostic biomarker for subsets of
epithelial ovarian cancer [25] and several patents about
breast and other cancers have been released. It was also
less abundant in HG compared to IPMNC. Among the
top reduced proteins in HG compared to IPMNC,
Cathelidicin antimicrobial peptide was found to be re-
duced in IPMNC compared to HG. It has been shown in
mice that its deficiency can worsen the acute pancreatitis
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by modulating inflammation of the pancreas [26]. Its de-
ficiency in pancreatic cancer may be the mediator of
sustained inflammation driving cancer growth.
To find out the events in serum factor upregulation

starting form healthy controls to LG to HG to IPMNC,
all proteins were used for drawing line graphs. We could
find 12 proteins which had significant ANOVA values
and which were showing a pattern in consistent increase
or decrease across the progress of IPMN. Eight of these
proteins were increasing from control to LG to HG to
IPMNC while four others were decreasing in the same
order (Mann-Kendall p value < 0.05). Among the con-
sistently increased proteins was C-reactive protein which
has previously been shown to discriminate between pan-
creatic cancer and healthy individuals [27]. However it is
a well-known fact that CRP is not specific to pancreatic
cancer and numerous other causes such as bacteremia,
SIRS, rheumatoid disease and trauma can also lead to it
upregulation in serum [28, 29]. However, it can be a part
of a panel together with other proteins to create a
surrogate endpoint for clinical entities. CRP was not
statistically significantly different between CTRL, LG
and HG (ANOVA p value > 0.05) however it was
significantly different between CTRL and IPMNC
(ANOVA p value < 0.05). It is possible that CRP can be
used together with a panel of proteins as detection and/
or screening biomarker to detect early stage PDAC how-
ever this claims warrants further validation. Other con-
sistently increased proteins included four complement
proteins (C2, C9, CFH, CFB). Complement proteins have
been previously shown to be elevated in serum of
pancreatic cancer and acute pancreatitis patients [30].
Complement cascade activation leads to persistent inflam-
mation and activates cancer specific pathways [31, 32].
Complement factor B has been suggested to be a supple-
mentary marker to CA 19–9 to diagnose PDAC. Comple-
ment system has been shown to be growth-promoting for
cancer cells [33] and its inhibitors are being considered
for anticancer therapy [34]. Remember that complement
activation was the main pathway enriched in comparing
controls to LG as well as HG and IPMNC in our dataset
(Table 1). APOE and APOC-II were among the proteins,
which were consistently decreased, being highest in con-
trols. These two are co-expressed proteins which function
in the transport of lipids. APOE also inhibits the aggrega-
tion of platelets [35]. Platelet aggregation is utilized by
various cancer cells as a strategy to modulate the throm-
bosis and haemostasis to promote its own growth [36].
Serum factors up or downregulation might also be needed
by various cancers to sustain their growth and migration
and our study identifies these factors in a patterned
manner. The 12 proteins with significantly increasing or
decreasing trend from CTRL to IPMNC were not pro-
posed as biomarkers in our study. It was because these

proteins, although their means were statistically signifi-
cantly increasing or decreasing in various groups, had
larger variation across the groups. This variation makes
their values more spread out across individuals and pro-
hibits their use as biomarkers.
This was a single institution study which might raise

questions about generalizability of the findings to
Finnish population. Our findings may not be true for all
centers in Finland; however there was no active enroll-
ment process involved which is a generally a source of
bias. Instead, all patients, for whom the preoperative
serum samples were available (about half of all resected),
were enrolled in the study. This excludes the selection
bias due to other decision making related factors, to a
large extent. However, we do acknowledge that unknown
and unidentified sources of bias, of varying magnitude,
may still be present and may prevent complete
generalization of the study to the population level
inferences. Nevertheless, our study provides a rich
source of biomarker candidates which can be validated
in multi-institutional studies on a larger scale in a
targeted manner.
We have imposed stringent parameters in OPLS-DA S

Plot to reach panels of potential serum biomarkers
(Table 2) to discriminate between CTRL vs LG by 2 pro-
teins, CTRL vs HG by 1 protein, CTRL vs IPMNC by 3
proteins and LG vs IPMNC by 3 proteins. We could not
differentiate between LG and HG as well as HG and
IPMNC. Low and high grades of IPMN are a very close
phenotype and so is High-grade IPMN and carcinoma
which makes it harder to differentiate by serum proteo-
mics. However, LG and IPMNC differentiation by serum
marker is clinically very useful. Trend analysis provided
information about involvement of upregulation of com-
plement pathway in transformation from healthy to LG
to HG to carcinoma and downregulation of apolipopro-
teins. These 12 proteins significant by Mann Kendall
trend test need to be further validated to provide more
information about progression and development of neo-
plastic transformation related to IPMN. We realize that
this is a pilot study and it needs to be validated by future
studies but this is the first study which reveals clearly
increasing and decreasing expression trends from
healthy-LG-HG-IPMNC and also provides glimpses of
altered pathways.

Conclusions
In conclusion, we propose several biomarker panels
(Table 2) as means to differentiate healthy controls from
LG, HG IPMN and also IPMN associated carcinoma. LG
can also be differentiated from IPMNC which is clinic-
ally very useful and might aid clinicians in differential
diagnosis in the future. In addition we identify the serum
proteins showing a trend in increase or decrease in
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grade-specific manner. This study works as precursor
for further studies to streamline the validation of these
biomarkers and probe the role of serum factors in
tumorigenesis of pancreatic cancer starting from low
grade IPMNs eventually progressing to IPMN associated
carcinoma. It will be helpful to further study the serum
proteins which can reflect the transformation from
healthy to LG IPMN to HG IPMN to IPMNC.
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