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Abstract

The causative agent of the ongoing pandemic in the world is SARS-CoV-2. The research on SARS-CoV-2 has
progressed with lightning speed on various fronts, including clinical research and treatment, virology, epidemiology,
drug development, and vaccine research. Recent studies reported that sera from healthy individuals, who were
confirmed negative for SARS-CoV-2 by RT-PCR method, tested positive for antibodies against spike and
nucleocapsid proteins of SARS-CoV-2. Further, such antibodies also exhibited neutralizing activity against the virus.
These observations have prompted us to prepare a commentary on this topic. While the preexisting antibodies are
likely to protect against SARS-CoV-2 infection, they may also complicate serological testing results. Another
unknown is the influence of preexisting antibodies on immune responses in individuals receiving
vaccines against SARS-CoV-2. The commentary identifies the potential limitations with the serological tests based
on spike and nucleocapsid proteins as these tests may overestimate the seroprevalence due to cross-reactive
antibodies. The inclusion of tests specific to SARS-CoV-2 (such as RBD of spike protein) could overcome these
limitations.

Introduction
Zoonotic transmission has been documented with many
virus families, including retroviruses and coronaviruses
[1–3]. Regarding the latter group, multiple outbreaks
representing three different coronaviruses have been
noted in the past eighteen years [4]. Severe acute respira-
tory syndrome coronavirus (SARS-CoV) was involved in
an outbreak in 2002 in Guangdong Province, China [5].
This virus ultimately caused around 8000 infections in 26
countries, with a total of 774 deaths. The case-fatality rate
was close to 10% (WHO-Summary of probable SARS
cases with onset of illness from November 2002 to July
2003. 2004). Ten years later, Middle east respiratory

syndrome coronavirus (MERS-CoV) was shown to be the
cause of an outbreak in Saudi Arabia in 2012. MERS-CoV
infected a total of 2494 individuals in 27 countries and
resulted in 858 deaths. The case-fatality rate was around
35% (WHO-Middle East Respiratory Syndrome Corona-
virus (MERS-CoV). The latest coronavirus associated with
an outbreak is designated as Severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2). This virus was first
identified in Wuhan, Hubei Province, China, in December
of 2019 [5–7]. SARS-CoV-2 has now spread to more than
230 countries in the Globe and was declared as a pan-
demic in March of 2020 by WHO. As of May 26, 2021,
there have been 167,423,479 confirmed cases and 3,480,
480 deaths globally. In the US alone, the number of infec-
tions and deaths as of the same date was 33,942,991 and
605,236, respectively (https://coronavirus.jhu.edu/). This
virus is highly transmissible due to specific genetic
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features that promote higher affinity binding to human
receptors, as compared to SARS-CoV and MERS-CoV.
Moreover, subsequent mutations in the virus that have
arisen during the pandemic, including a specific mutation
in the S protein residue 614 from aspartic acid (D) to
glycine (G), have increased viral transmission potential
[8–12]. In addition to these three pathogenic corona-
viruses, four less virulent viruses in the coronavirus family
are associated with self-limited upper respiratory tract
infections in humans. Of these, HCoV-OC43 and HCoV-
229E were identified in the mid-1960s [13, 14]. HCoV-
NL63 and HCoV-HKU1 have been isolated in 2004 and
2005, respectively [15, 16].
Currently, a combination of five viruses (OC43, 229E,

NL63, HKU1 and SARS-CoV-2) are circulating in the
population worldwide. In addition, two viruses (SARS-
CoV and MERS-CoV) have been associated with limited
outbreaks that were geographically contained. This sce-
nario poses key questions pertinent to understanding the
pathogenesis and therapeutic options for SARS-CoV-2.
This is based on the notion that prior infections with
closely related viruses in people could have a tremen-
dous influence on the infection and disease course of
other viruses. There are multiple questions related to
the impacts of infections by closely related viruses: i)
whether prior infection with a related non-pathogenic
coronavirus may provide some level of protection to-
wards subsequent infection by another member of the
same virus family due to the preexisting immunity elic-
ited by homologous genes; ii) conversely, whether prior
infection with a non-pathogenic coronavirus has the
potential to induce immune activation worsening the
clinical course of disease or whether, the in vitro
phenomenon of antibody-dependent enhancement of
virus infection, shown for other viruses [17–25] could
occur in vivo to accelerate viral replication; iii) or
whether co-infection with different coronaviruses could
increase pathogenicity resulting from either additive or
synergistic effects; additionally, from a diagnostic per-
spective, iv) whether antibody responses against a prior
non-pathogenic coronavirus could result in false-positive
serological tests meant to screen for targeting SARS-
CoV-2. In this regard, Sagar et al. (2021) reported that
individuals infected with related common cold corona-
viruses exhibited less severe COVID-19 disease, suggest-
ing preexisting immune responses may mitigate the
severity of the disease [26].
The work carried out by investigators on different vi-

ruses over the years have provided answers to the ques-
tions mentioned above [26–29]. In the context of the
current pandemic, we are facing a similar situation with
coronaviruses as there are multiple viruses known to in-
fect humans. The purpose of the commentary is to con-
nect the ongoing serological studies on COVID-19

patients to the following areas: i) influence of preexisting
immunity on the extent and breadth of immune re-
sponses in individuals with SARS-CoV-2 infection in
comparison to individuals who received vaccines; ii)
cross-reactive antibody responses due to shared epitopes
among related viruses; iii) cross-reactive humoral re-
sponses due to molecular mimicry; iv) issues with preva-
lence studies due to cross-reactive antibodies.

Pre-existing antibodies in the individuals against
SARS-CoV-2 in the absence of virus infection
In the area of serological testing, sera collected from
pre-pandemic days have generally been used as controls.
However, some sera in this group showed high reactivity
towards spike and nucleocapsid proteins of SARS-CoV-
2. It was suggested that the cross reactivity observed
may likely be due to the individuals’ exposure to the re-
lated coronaviruses. This has been the subject of several
studies [30–35]. Ng et al. recently reported that healthy
individuals, who were confirmed as negative for SARS-
CoV-2 infection by RT-PCR, have been shown to harbor
cross-reactive antibodies against the spike protein of
SARS-CoV-2 by a flow cytometry-based assay [32]. The
antibodies found in healthy individuals were primarily of
IgG isotype and are more prevalent among children than
adults. The antibodies noted in healthy individuals were
primarily reactive against the spike protein S2 subunit
that mediates viral fusion between the viral and host cell
membranes and has greater level of sequence conserva-
tion than the S1 subunit involved in cellular receptor
binding. The cross-reactive antibodies in healthy individ-
uals were found to exhibit neutralizing activity against
live SARS-CoV-2 virus and pseudotype virus assays, thus
suggesting possible protective or disease ameliorating
potential [36–38]. The antibodies present in the sera of
SARS-CoV-2 infected patients showed IgG, IgM, and
IgA antibodies against spike protein. Further, antibodies
showed cross-reactivities towards other members such
as SARS-CoV and OC43 but not with NL63 and 229E
[39]. Majdoubi et al. (2021) reported that about 90% of
uninfected adults showed cross-reactive antibodies
against spike protein, receptor-binding domain (RBD),
N-terminal domain (NTD), or nucleocapsid protein [40].
Peptide array covering the proteins encoded by SARS-
CoV-2 genome showed reactivity specific to spike and to
conserved nonstructural viral proteins. The preexisting
immunity in the form of antibodies (IgA, IgM, and IgG)
in milk in individuals negative for virus infection is
shown to be related to the infections with OC43 and
229E. While IgG was specific to S2, both IgA and IgM
were reactive to S1 and S2 of spike protein [41]. The
profiling of sera from 43 individuals for immune re-
sponses against different coronaviruses indicated that
preexisting immunity was directed to NL63 and HKU1.
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This status had no influence on the antibody response
against SARS-CoV-2 [42]. Similarly, the findings of
Simula et al. (2020) showed that antibodies against
NL63 have the potential to cross-react against SARS-
CoV-2 spike protein [43]. The preexisting humoral re-
sponses against SARS-CoV-2 were also reported to be
against N and spike proteins [44, 45]. The presence of
preexisting antibodies in healthy individuals is further
evidence that intravenous immunoglobulin (IVIg) de-
rived from healthy donors showed positivity to SARS-
CoV-2 antigenic epitopes likely resulting from epitopes
of common cold coronaviruses [46].
Shrock et al. (2020) also recently reported cross-

reactive antibodies against the ORF1 protein in the sera
from pre-COVID-19 healthy controls using virscan
approach involving peptides representing genomes of
several members of the coronavirus family including
SARS-CoV-2 [47]. In this study, antibodies against spike
protein were not detected, possibly be due to the assay
format. Again, whether such antibodies mitigate disease
due to SARS-CoV-2 is unknown. It may require
population-based studies that investigate stored sera
(such as from blood banks) to determine the relative risk
for infection and severe disease as a function of antibody
titers and target antigens.
Importantly, it would be of interest as to whether pro-

tective epitopes or antigenic regions could be defined
through: i) elucidating the nature of epitopes targeted by
pre-existing antibodies in the healthy individuals without
SARS-CoV-2 infection; ii) comparing amino acid se-
quences of the potential epitopes among human corona-
viruses for homology, and with respect to viral variants
appearing during the pandemic iii) determining the dif-
ference in the repertoire of humoral responses induced
by modified recombinant spike proteins in comparison
to the unmodified spike proteins. However, determin-
ation of the relevance of preexisting sero-reactivity ne-
cessitates determining whether reactive serological tests
represent actual exposure to SARS-CoV-2 infection or
arise from molecular mimicry to other Coronaviruses.

Cross-reactivities resulting from shared epitopes?
The complete genome sequence of SARS-CoV-2 became
available in the middle of January 2020. The genome
wide pairwise comparison shows 79.6% and 50% hom-
ology to SARS-CoV and MERS-CoV, respectively [48].
The homology at the spike protein level between SARS-
CoV-2 and SARS-CoV shows 75%, 64%, 90%, 51%, and
50% for full length protein, S1 RBD, S2 fusion domain,
S1 NTD, and S1 RBM, respectively [12, 49]. Based on
the information available regarding experimentally veri-
fied epitopes in SARS-CoV, Ahmed et al. analyzed
SARS-CoV-2 sequence for predicting potential epitopes
[48] revealing 49 epitopes which are identical between

SARS-CoV-2 and SARS-CoV. Of the 49 epitopes, 23 are
located in the S protein, and 20 of the 23 epitopes fall in
S2 subunit region. The second-largest number of cross-
reactive epitopes mapped to the N protein (22 epitopes),
while the last 4 were within the M protein. Grifoni et al.
analyzed and predicted the dominant epitope regions in
SARS-CoV-2 based on SARS-CoV and other related
viruses [50]. The predicted conserved epitopes in the
SARS-CoV-2 S protein regions comprised of fragments
at the following amino acids positions: 287–317, 524–
598, 601–640, 802–819 and 888–909; and the epitopes
in N protein were located at the following positions 42–
62, 153–172 and 355–401. Forcelloni et al. reported on
the conservation of epitopes in spike and nucleoprotein
of coronaviruses [51]. The C-terminal region of the spike
protein and the nucleoprotein RNA binding (41–186 aa)
and dimerization (258–361 aa) domains harbor B and T
cell epitopes which may provide protection against other
members of coronaviruses [51]. Therefore, antibodies
against these conserved epitopes may result in cross-
reactivity in antibody assays.

Presence of antibodies against S protein in
individuals without SARS-CoV-2 infection: result
of potential molecular mimicry
The reports of autoimmune and inflammatory diseases
in SARS-CoV-2 infected patients suggested that potential
homologous regions in SARS-CoV-2 protein and cellular
proteins may lead to such conditions. Molecular mimicry
is a well-established phenomenon when proteins encoded
by distinct or unrelated genes share similar structures
[52]. Such structures may be due to conformational fea-
tures or homology at the primary amino acid sequence
level. Based on this, there is a possibility that cross reactive
antibodies in healthy individuals without SARS-CoV-2 in-
fection could be the result of molecular mimicry with
other coronaviruses and cellular genes. Several groups
reported that a significant homology was noted between
the macrodomain of SARS-CoV-2 nsp3 and ADP-ribose
glycohydrolase MACROD1, MACROD2, protein mono-
ADP-ribosyltransferase PARP14 and PARP 9 [53]. Hwa
et al. (2007), based on the analysis of homology between
spike protein of SARS-CoV and human cellular proteins,
provided evidence in support of molecualr mimicry [54].
This analysis identified residues 199–254, 658–715, 893–
951, and 1127–1184 exhibited homology with hydroxy
acid oxidase, human golgi autoantigen, Angrgm 52, and
pallidin, respectively. The peptides derived from these re-
gions of spike (D01, aa 199–210; D07, aa 927–937; D08,
aa 942–951) showed reactivity towards the sera from
SARS-CoV patients. Further, it was shown that hyper-
immune sera against D08 and D07 cross reacted with hu-
man A549 cells and D10 (aa 490–502) cross reacted with
bradykinin [54]. These studies suggest that homology
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region in cellular protein may lead to the induction of
autoantibodies in healthy individuals upon infections by
coronaviruses. These autoantibodies are likely to be recog-
nized by the S2 domain of spike protein of SARS-CoV-2
[55]. Vojdani et al. (2021) reported that 28 out of 55 tissue
antigens showed reactivities towards monoclonal anti-
bodies (spike and nucleoprotein) and polyclonal anti-
bodies (E and M) against SARS-CoV-2 proteins [56]. It
was further noted that the amino acid sequence similar-
ities between SARS-CoV-2 and cellular proteins including
Mitochondrial M2, F-actin and TPO were the source of
reactivities. Recently, Qiang et al. (2021) showed high
homology between a segment (YNYLYR) in RBM and the
epitope sequence NDALYEYLRQ of several monoclonal
antibodies against tetranectin. The two tetranectin mono-
clonal antibodies were shown to bind RBM with a KD of
17.4 and 62.8 nM, respectively [57].

Impact on antibody therapy and vaccine research
Monoclonal antibody therapy or convalescent plasma
therapy is currently used to treat individuals infected
with SARS-CoV-2. The goal is to competitively inter-
fere with the binding between the spike protein S1
domain and the ACE2 receptor [58–61]. It is also pos-
sible that antibodies to S2 subunit of the spike protein
could also interfere with the infection process through
blocking at the level of viral and cell membrane fusion.
It was recently reported that polyclonal antibodies
present in convalescent COVID-19 patients showed
neutralizing activity against the virus. This has been
the basis for the use of convalescent plasma for the
treatment of patients with severe COVID-19 disease
[62, 63]. This approach has been granted emergency
use authorization in several countries. Interestingly,
healthy individuals with possible exposure to common
cold coronaviruses may also contain antibodies with
neutralizing activity [32, 64] potentially expanding the
pool of “therapeutic” serum donors.
While the potential therapeutic benefit of convales-

cent serum and, by definition, neutralizing monoclonal
antibodies targeting S1 protein is based on interfering
with viral adherence to the ACE2 receptor, the studies
by Ng et al also suggest that S2 protein reactivity in
convalescent sera should be evaluated as a predictor for
clinical success. The monoclonal antibodies targeting
the S2 subunit should be evaluated for neutralizing
activity and therapeutic benefit [32]. Moreover, S2 is
likely to require a greater degree of sequence conserva-
tion among virus variants, targeting this subunit may
avoid potential viral escape through mutation in the S1
binding domain. The recent demonstration of cellular
immune responses in patients who recovered from
COVID-19 suggest that induction of a combination of
humoral and cellular immune responses may be useful

for optimal protective effect [65–67]. This is also
evident in the studies with mRNA, vectored viral and
inactivated viral vaccines [68, 69].
In light of preexisting immunity against SARS-CoV-2

in the general population, answers to the following ques-
tions would benefit vaccine studies: i) are there safety
concerns for administering vaccines to individuals with
preexisting immunity?; ii) do the individuals with preex-
isting immunity show elevated levels of immune re-
sponses in comparison to naïve individuals?; iii) do the
individuals with preexisting immunity require only one
dose of vaccine instead of the required two doses regi-
men in the case of approved Pfizer-BioNTech and Mod-
erna mRNA vaccines? Assis et al. (2021) reported that
individuals with prior exposure to the virus generated a
high antibody response to spike protein in comparison
to the individuals without prior exposure. It is not
known whether individuals infected with related viruses
generate a similar response [70].

Impact of antibody cross-reactivity on serology
tests
The tests that examine antibodies as biomarkers have
been generally carried out in the groups including virus
infected individuals with mild, moderate and severe dis-
ease symptoms, convalescing patients, asymptomatically
infected individuals, and general population. However,
the validation of antibody tests utilized sera from healthy
individuals as negative controls which were collected
during pre-pandemic days but recent publications have
shown the presence of cross-reactive antibodies against
the ORF1 and spike proteins of other Coronaviruses
[32, 47] in addition to the highly homologous core N
protein. This is not surprising since the members of
the coronavirus family infecting humans are closely
related. Several investigators have reported on the ap-
pearance of antibodies to SARS.Cov2 proteins in the
blood/ sera after the onset of symptoms in SARS-
CoV-2 infected individuals [67, 71, 72]. The general
trend has been that IgM and IgA antibodies appear
in the first week after the onset of symptoms and IgG
antibody appears in the second week, though there
are also reports on its appearance in the first week
[9, 73–77]. Due to cross-reactivity, tests measuring
antibodies may not serve as tests for the diagnosis of
COVID-19. It has been shown, however, that serological
tests serve as adjunct tests for the diagnosis in situations
where patients with the designated symptoms are negative
for SARS-CoV-2 by RT-PCR [78–80]. Serological anti-
body tests are important for evaluating disease incidence
and seroprevalence evaluation in the population. The
prevalence rates were found to be in the range of 1-5% de-
pending on the country and location selected for analysis
[10, 67]. Specifically, viral structural proteins such as spike
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and N have been used as substrates for evaluation of anti-
bodies (Fig. 1). While results could be readily generated
from these assays (ELISA and immunochromatography),
their interpretation may not be as straightforward if the
individuals tested had previously been exposed to a related
virus [67].
For example, if an individual is exposed to common

cold coronaviruses, the antibodies elicited in response to
such infections are likely to cross react with SARS-CoV-
2 encoded proteins due to homology between these vi-
ruses. In support of this, recent studies demonstrated
preexisting antibodies against SARS-CoV-2 proteins in
healthy individuals without SARS-CoV-2 infection [32].
It should be mentioned that such preexisting humoral
responses may lead to overestimation of the prevalence
rates in the population (Fig. 2). Though SARS-CoV and
MERS-CoV infections have been confined to fewer
countries and have not been actively in circulation, the

situation with common cold human coronaviruses is
different. Currently, there are commercial kits in the
market that measure antibodies in the sera using only
the N protein as the substrate. Hence, the incidence and
prevalence estimation studies should be carried out with
antigenic substrates that have the least homology with
related coronaviruses.

Summary
In summary, several studies have reported that individ-
uals may have pre-existing antibodies to recently
emerged SARS-CoV-2 prior to the outbreak due to in-
fections with related common cold coronaviruses, hom-
ology in the primary amino acid sequences of proteins
encoded by these viruses, and molecular mimicry in the
important antigenic targets. On the one hand, such anti-
bodies may prove to be extremely beneficial by providing
pre-existing protective immunity to the hosts when they

Fig. 1 Serological assays using various His-tagged SARS-CoV-2 antignes. The boundaries of the substrates (S, RBD and N) are indicated by the
amino acid numbers from N- and C-termini, respectively
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bind to the conserved neutralizing epitopes on the S2
domain of the spike protein. On the other hand, they can
also represent a challenge through potential antibody-
mediated enhancement, which can exacerbate the severity
of the infection by the emerging coronavirus, but this has
not yet been well-described in humans in the case of
SARS-CoV-2. Additionally, these pre-existing antibodies
may serve as a confounding factor and render it hard to
study true prevalence of infection in a population through
the use of routine serological assays. Future studies to fur-
ther characterize the epitope-specificity and neutralization
potential of these cross-reactive antibodies are clearly
of great importance to mitigate the current COVID-19
pandemic and to prevent possible future coronavirus
outbreaks.
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